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As artificial intelligence (AI) becomes entrenched in mainstream 
applications, regulations and laws are being written that lay 
emphasis on managing the associated ethical and operational risks. 
The need to understand why an AI-based system made a particular 
recommendation is critical to ensuring recommendations are fair and 
beneficial to the business.

In response, Explainable AI (or XAI) has emerged as a digital 
discipline verifying that an AI-based system delivers expected 
results that are interpretable. XAI is attracting significant R&D 
investments, with the intent of making ML-based solutions 
explainable and trusted.

Several explainability solutions are available for ML models, however, 
most suffer from the drawbacks including:
• Solutions/methods are overly technical and require some degree

of specialization to interpret results
• Solutions do not deliver a comprehensive or varied explainability

view.

Atos XAI addresses these challenges by:
• Providing comprehensive but easy-to-understand reporting,

focusing on the explainability of the ML model in terms that users
without a technical background can understand

• Hiding underlying complexity so users are presented with a simple
interface to create explainability reports for their ML models.

• Providing unique perspectives of model explainability using
different algorithms for the same ML model.

Integrating Atos XAI into most solutions expands the opportunity 
to introduce Explainable AI to more digital ecosystems in the 
organization.
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Recent advances in AI-based systems have led to organizational dependence on AI/ML 
to optimize operations or help stay ahead of the competition. AI-driven decision-making is 
now ubiquitous and an integral part of our day-to-day life, regardless of industry, and helps 
make critical decisions in many sectors. This may lead to legal and regulatory compliance 
implications. Think of self-driving car decisioning, choosing candidates to call for a job 
interview or predicting fraudulent banking transactions — and the risks and consequences 
should there be no regulation. It presents us with the conundrum: If a machine learning 
(ML) model makes correct decisions, should we not just be happy with the result and
ignore its rationale for making those decisions?

In the real-world scenarios encountered by ML models, predictions and model accuracy only 
solve part of the problem. The system must also account for why the prediction was made, as 
the decision may have severe implications for those affected by it. Explainability in ML systems 
presents the rationale for the decisions in a more understandable form.

Simpler algorithms, like linear and logistic regression, are best suited for explainability, and 
underlying formulas and mechanisms are easily understood. Still, in many real-world use cases, 
these algorithms cannot supply adequate performance metrics. Hence it becomes exceedingly 
difficult to use these models in production.

“The problem is that 
a single metric, such 
as classification 
accuracy, is an 
incomplete 
description of most 
real-world tasks.” 

(Doshi-Velez and Kim, 2017)

Introduction
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Fig 1.0 - Performance and explainability with EBM (Picard 2021)
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To improve accuracy, precision and recall, we use complex 
ML and deep learning (DL) algorithms like Extreme Gradient 
Boosting (XGBoost), support vector machines (SVM), stacking 
and neural networks. These advanced algorithms can generate 
better results, but at the cost of losing explainability. These 
algorithms and their mathematical calculations are so complex 
that they cannot be understood or explained easily on their 
own. Fig 1.0 shows the relationship between explainability and 
model performance.

Here we can see that the complex algorithms give better 
performance, but they’re black boxes; we cannot see what 
steps the algorithms follow to make a prediction. The results 
may be fascinating, but due to the black-box nature of the 
algorithms, it is almost impossible to trust these algorithms.
Once we understand the reasoning behind a particular 
algorithm, we can trust the predictions and deploy to 
production with confidence. With the predictions now easily 
interpreted, they can be used to make better decisions.

Explainability can also help us find biases in the data and 
the models. For example, in a loan-approval ML use case, 
explainability could reveal that our model may be declining 
loan applications for a specific group of individuals based on 
their demographic or ethnic origin.

Some of the benefits provided by model explainability are:

• Building trust in ML/DL models
• Increasing transparency
• Identifying bias in data or ML/DL models
• Improving troubleshooting resolution.

Many times in technology’s history, we’ve 
seen that early and broad adoption can lead 
to differentiating value, growth and 
competitive advantage. Atos has found a 
way to democratize the creation, 
accountability and distribution of AI models 
for impactful effect.
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XAI Framework Design

Let’s review the critical methods in XAI. 

ML explainability can be intrinsic or post hoc. Intrinsic methods restrict the complexity of the models and are considered 
interpretable due to their simple structure, such as short decision trees or sparse linear models. Post hoc interpretability refers to 
applying interpretation methods on top of trained models.

Similarly, local explanation explains the model at record level, and global explanation explains the model at feature level.

Fig 2.0 - Mind map of XAI/Interpretability methods. (Linardatos et al., 2020)
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There are different methods available to derive ML explainability. Each comes with its own 
complexity and learning curve. 

Atos XAI Framework 

At Atos, we developed a comprehensive framework that 
reduces the underlying complexity while exposing application 
programming interfaces (APIs) to expand utilization. This 
simplified API helps ML engineers and data scientists perform 
experiments on their models to derive interpretability at 
both the model level and the record level. This framework is 
extremely easy to configure and helps to derive a quick and 
qualified explanation of the model and prediction, producing a 
simplified, easily understandable report. The XAI report gives a 
unified view of the model interpretation using different methods 
or algorithms. It improves the trust and reliability of the model. 

Fig 3.0 - Features of Atos XAI

The XAI report also creates a simple natural language-based 
explanation of each of the graphs and diagrams. Additionally, 
the rule-based explanation uses a Fold algorithm to help 
interpret the rules and exceptions for the model based on the 
data used to train it. 

Our automated ML for explainability solution, XAI, provides a 
comprehensive report with various explanations at both global 
and local levels.

Below are the salient features of Atos XAI:
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Atos XAI is a Python-based solution that provides a comprehensive and easy-to-understand report.

Fig 4.0 - Features of Atos XAI Reports
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Use Case Executive Summary 
An overview of our use-case experiment, offering a snapshot 
of dependent and independent features and the essential 
elements of the use case.

Model Insights 
Insights into the topmost relevant features from the experiment 
that drive model prediction. Different algorithms are used to 
identify the topmost prominent features. 

Dataset Summary 
An overall summary of our dataset and features. Details 
including several observations, target features, model name, 
operation type and others are included. 

Model-Level Explanation 
Global explanation of the model is derived over the entire 
dataset. It consists of the following sections:

1. Permutation Feature Importance
Provides us with information about the importance of each
feature on the model prediction by calculating the increase
in the model’s prediction error after shuffling the value of a
feature.

A feature is deemed important if shuffling its value increases
the model prediction error. If the error is still the same or 
decreases, we assume the feature is not essential to the
model.

2. 	SHAP Feature Importance
The Shapley value derives its concept from game theory 
to measure how much an individual player contributes to
a game. To achieve this, we observe each group of players
and the outcome they achieve. A player’s Shapley value is
the weighted average difference between the coalitions that
include the player and those that don’t include the player.
In the case of a model prediction, each player becomes a
feature and the game becomes the prediction of the model.

The SHAP, abbreviated from SHapley Additive exPlanations
depicts the feature importance along with its correlation, i.e.,
whether prediction probability increases or decreases with
an inclusion of a feature.

3. 	FOLD Explanation 
First-order learner of defaults (FOLD) algorithm uses high-
utility itemset mining and answer-set programming logic:

• 	The FOLD algorithm learns a concept as a default theory 
(also known as rules) and a set of exceptions.

• 	These rules and explanations are logical explanations
that are easy to understand.

The FOLD algorithm provides explanation in terms of 
rules and sets of exceptions, which are remarkably like 
how human being perceives and understands real-world 
experiences . 

Problem Statement 
Is a loan applicant eligible for a loan?

The FOLD algorithm uses the data and model to create 

natural language-based rules and exceptions, as explained 
below:
Loan applicant is suitable for a loan if the rule and 
exception combination is true.

A sample of rule and exception explanation is as below: 

(Here we are showing two rules, but there can be greater 
numbers of rules and exceptions)

Rule 1:
Credit score is greater than 750 and 
Exception 1 is false

Rule 2:
Credit score is greater than 650 and
Annual income is greater than 100,000 and
Exception 2 is true

Exception 1:
Current loan amount is greater than 700,000

Exception 2:

Months since last delinquent is greater than 60 and 

Number of credit problems is less than 2 and 

Years of credit history is greater than 10

4.	Partial Dependence Plot
The partial dependence plot (PDP) shows the marginal effect
one or two features have on an ML model (J. H. Friedman
2001). PDPBox can visually decide the impact of a particular 
feature on model prediction. It can even help explain the
non-monotonic effect of features on prediction.

PDP explains each feature and its impact on output
probability with a change in the feature value.
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Data-Level Explanation 
This section can also be referred to as Local Explanation because it supplies the explanation about each data point or record.
It consists of the following sections:

1. 	LIME Local Explanation
In local interpretable model-agnostic explanations (LIME)
papers, authors propose a concrete implementation of local 
surrogate models. Surrogate models try to approximate the
black-box model we are trying to explain.

LIME is used to train a local surrogate model to explain
individual predictions. It creates a new dataset consisting of 
perturbed samples and the corresponding predictions of 
the black-box model. On this newly created dataset, LIME
then trains an interpretable model, weighted by the proximity 
of the sampled instances to the instance of interest. The
learned model is a good approximation of the ML model 
predictions locally, but it does not have to be an excellent
global approximation. This kind of accuracy is also called
local fidelity.

The LIME method provides an explanation for each
data point or record; it gives a detailed explanation of 
all the features and their value that the model took into
consideration to arrive at the output prediction. It provides
the probability value for all the target classes, the feature
value and its impact on the prediction.

2. 	SHAP Local Explanation
A Shapley value-based explanation provides a concise plot
depicting the impact of each feature and its value on the
prediction.

3. 	FOLD Local Explanation
FOLD local explanations provide the natural, human-
readable explanation, in terms of rules and exceptions, that is
extremely easy to comprehend and understand.

4.		Counterfactual Explanation 
A counterfactual explanation shows us what feature value
changes can move the output prediction class from one
level/class to another. It can be beneficial when we need to
provide recommendation. For example, in the loan approval 
use case, if a customer’s loan application is rejected, this can
be used to give feedback on what changes are needed to
make the profile eligible for a loan.

5. 	What-if Analysis 
A what-if tool acts as a playground area where anyone can
play around with the record values and see their changes to
the output prediction. It can be beneficial for troubleshooting
and model performance analysis.

Some of the unique benefits of Atos XAI framework:

Highlights

• Automatic interpretation from graphs/plots

Many times, graphs can be difficult to interpret. We have
added dynamic explanations for each report chart so that end
users can easily understand them and make better decisions.

• Rule-based natural language explanation

Explanations are provided in terms of rules and sets of 
exception in natural language, so users are better equipped
to understand and interpret model behavior. These
explanations are beneficial for business users with domain
knowledge to help understand the impact of each feature.

• Unified view of explanation using multiple algorithms

Multiple algorithms come together to derive the
explainability, which increases our trust in the trained model 
and its predictions if they all provide the same kind of 
explanation. It will help us to troubleshoot our model and find
bias, if any.

• Custom ranking based on different explanations

We have developed a custom ranking mechanism, which
takes input from various explanation algorithms and provides
a final customized ranking of features.

• What-if analysis

This tool provides an interactive playground for predictions.
Users can change the value of features for any data point
and then see its impact on the prediction. This helps to refine
models and improve troubleshooting.
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XAI is quickly gaining importance, with explainability becoming an essential and default feature of AI-enabled solutions. As AI-
enabled system adoption increases, the need for a matured AI system to include vital attributes like explainability, security, privacy, 
robustness, ethics and inclusiveness is critical. These models need to be immune to bias in the data and demand a robust model 
governance framework

Therefore, AI engineers must consider these principles in the early phases of AI-enabled system development. With these 
principles in place, we can ensure an explainable AI framework that earns the confidence of the business and community at large.

XAI is a highly critical component of an overarching responsible AI framework. All AI-enabled systems should explain the action/
predictions they have made, as they have far-reaching ramifications for businesses and society. 

Atos has been committed to the field of XAI, helping organizations understand the importance of explainability and how to 
integrate it into ML practices: XAI decreases the risk of AI systems while building trust and reliability. Reports generated from this 
framework can be convenient for data scientists, ML engineers and business SMEs to understand the model’s functioning and 
predictions, and take further actions as needed.

Key takeaways:

Conclusion

• Explainable AI is one of the core components in building a
responsible AI system that increases the trust in AI-enabled
systems.

• XAI is a responsible AI-based design approach that can
increase the trust of AI-enabled systems.

• Simplified reporting of model explanation increases the
understanding of AI systems for all the stakeholders of AI
ecosystems.

Where to begin:

As a first step, our recommendation is to identify the AI-
enabled systems in your organization. This information will 
allow you to work toward the below action items: 

• Advocate for explainability to be at the forefront of any AI
decision-making solutions.

• Get internal and external stakeholder alignment around
identified risk areas.

• Gather input from your community of interest to properly 
reflect rule-set outcomes to avoid risk, bias or unintentional 
consequences.

• Lay out a framework to enable and integrate XAI for your AI
systems.
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Abbreviation Description

AI Artificial intelligence

API Application programming interface

DL Deep learning

LIME Local interpretable model-agnostic explanations

ML Machine learning

PDP Partial dependence plot

R&D Research and development

XAI Explainable AI

EBM Explainable Boosting Machines

Glossary
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