

TEMPPO Designer (IDATG)

Version 14.1

Tutorial

August 2011

Copyright © Atos IT Solutions and Services GmbH 2011

Microsoft, MS, MS-DOS, MFC, Microsoft Developer Studio and Windows are trademarks of Microsoft Corporation.

The reproduction, transmission, translation or exploitation of this document or its contents is not permitted without explicit written
approval. Offenders will be liable for damages. All rights reserved, including rights created by patent grant or registration of a utility
model or design.

Right of technical modification reserved.

Publisher:
Atos IT Solutions and Services GmbH
Si SOL TAM
Gudrunstrasse 11
1101 Vienna, Austria

Tutorial Document Management

2012-02-14 Page 3 / 69

Document Management

History of changes

Version Status Date Person resp. Reason for Change

9.1 Ready 16.9.01 Weihs Bettina Creation

10.0 Ready 25.10.01 Adriana
Strejčková

Update, proofreading

10.2 Ready 10.10.03 Stefan Mohacsi Update

11.0 Ready 20.07.04 Stefan Mohacsi Update

11.2 Ready 25.04.05 Wiltrud Breuss Revision, Update

12.0 Ready 23.01.06 Wiltrud Breuss Revision, Update

12.1 Ready 31.07.06 Wiltrud Breuss Revision, Update

12.2 Ready 29.09.06 Wiltrud Breuss Revision, Update

14.1. Ready 05.08.2011 Stefan Mohacsi Update

Document was created using the following tools:

Microsoft Office WinWord 2003

Corel Paintshop Pro 10.0

Tutorial Contents

2012-02-14 Page 4 / 69

Contents

1 Introduction.. 6

1.1 Purpose of the Document ... 6

1.1.1 Using this Tutorial.. 6

1.2 Validity of the Document... 6

1.3 Definitions of Terms and Abbreviations .. 6

1.4 Relationship to other Documents.. 6

2 IDATG Overview... 7

2.1 Testing with IDATG .. 7

2.2 Tool Architecture using IDATG ... 7

2.3 Test Process... 8

2.4 Important Terms ... 9

2.4.1 Window.. 9

2.4.2 Task .. 9

2.4.3 Step... 9

2.4.4 Condition ... 10

2.4.5 Action .. 10

2.4.6 Parameter.. 10

3 Installation of IDATG and the WinRunner-AddIn ... 11

3.1 System requirements.. 11

3.2 Installation instructions ... 11

3.3 License Installation ... 12

4 The Project 'Login' ... 13

4.1 Creating a Project... 13

4.2 Recording a Window with the GUI Spy ... 14

4.3 Application Editor - Window Hierarchy.. 15

4.4 Defining a Task Model .. 18

4.5 Application Editor - Task Hierarchy (Task Editor) ... 18

4.6 Task Flow Editor ... 20

4.7 Step Editor.. 22

4.8 Task Parameters Editor .. 25

4.9 Replacing Static Values with Parameters ... 26

4.10 Sub Task Editor .. 27

4.11 Generating Task-based Test Cases.. 31

4.12 Converting Test Cases.. 32

4.13 Summary... 32

5 Project Tennis .. 33

Tutorial Contents

2012-02-14 Page 5 / 69

5.1 Recording the GUI.. 33

5.2 Searching for a window .. 36

5.3 Recording Tab Pages... 37

5.4 Radio Button Groups .. 40

5.5 Task flow .. 41

5.5.1 Task Step Editing .. 41

5.6 Conditions, Actions and Attributes .. 44

5.6.1 Creating Attributes... 44

5.6.2 Setting Conditions ... 44

5.6.3 Setting Attribute Values with Actions ... 45

5.7 Parameters (again) ... 48

5.7.1 Defining Parameters.. 48

5.7.2 Using Parameters.. 48

5.7.3 Parameters in Embedded Tasks.. 50

5.8 Test Execution.. 52

5.8.1 Resolving GUI Recognition Problems.. 52

6 Test Maintenance... 53

6.1 Adding a New Object to an Existing Window .. 53

6.2 Copying a Task... 54

6.3 Splitting a Building Block Task.. 54

6.4 Changing Parent-Child Relationships ... 55

6.5 Deleting a Task... 55

6.6 Adding a new Connection ... 56

6.7 Deleting a Connection .. 56

6.8 Deleting a Window.. 56

6.9 Creating new Menus... 56

6.10 Replacing a window .. 56

7 Data-oriented tests .. 58

7.1 Importing Test Data .. 58

7.2 Generating test data records .. 61

7.2.1 Defining equivalence classes... 62

7.2.2 Record generation ... 64

7.3 Working with loops ... 65

7.3.1 Data sets ... 65

7.3.2 Fixed number of executions... 68

7.3.3 Selecting records out of a data set .. 68

7.4 Summary data-oriented test cases ... 68

8 Conclusion ... 69

Tutorial Introduction

2012-02-14 Page 6 / 69

1 Introduction

1.1 Purpose of the Document

The purpose of this tutorial is to explain the usage of the test specification and generation tool
TEMPPO Designer (IDATG).

1.1.1 Using this Tutorial

This tutorial provides two examples that demonstrate the usage of IDATG. The first example
'Login' is very simple and shows the basic sequence of steps to get test cases.
The second example 'Tennis' is more extensive and shows the full power of IDATG. It also
explains how to tackle typical problems that arise during the specification process. Both demo
applications are delivered together with this tutorial.
Basic knowledge of the test process and its purpose is presupposed.

1.2 Validity of the Document

This tutorial is valid for IDATG V14.1-

1.3 Definitions of Terms and Abbreviations

Exercise to practice the discussed matter

Solution and explanation of the exercises

Test Case (TC) A set of inputs, execution conditions, and
expected results developed for a particular
objective, such as to execute a particular
program path or to verify compliance with a
specific requirement.

Test Case Execution The execution of a test case by a human
user or capture/replay tool followed by the
verification of the results.

Test Case Generator (TCG) A tool that automatically generates test
cases based on a formal specification of a
system.

WinRunner A commercially available capture/replay tool
for automatic test case execution

1.4 Relationship to other Documents

• IDATG User’s Guide

Tutorial IDATG Overview

2012-02-14 Page 7 / 69

2 IDATG Overview
IDATG serves to create test scripts for various capture/replay tools starting from a formal
(abstract) specification. This chapter explains which kinds of test cases can be generated by
IDATG. It also shows the role of the tool in the test process and its place in the tool architecture.

2.1 Testing with IDATG

IDATG is used for black-box testing, which means that the source code of the application is not
required for testing. While the original purpose of IDATG has been the support of automated GUI
testing, now the tool can also be applied for different forms of API testing. The following types of
test cases are generated:

• Graph-oriented test cases based on hierarchical sequence diagrams ("task model"). This
method can be used for both GUI and API testing. By defining frequently performed test
sequences as "building blocks", the maintainability and clearness of the specification can be
significantly improved.

• Data-oriented test cases: at the moment for each record in the data set a separate test case
is created. They are also based on task models.

• Transition test cases that cover the dynamics and semantics of the GUI. They can be used
for stand-alone testing of single dialogs or for integration testing.

The amount of test cases generated by IDATG depends on the level of detail provided in the
formal specification. For a specification which describes the behavior of the user interface rather
coarsely, only a small number of test cases can be generated. If the GUI-behavior is specified with
great detail, a large amount of test cases is generated.

2.2 Tool Architecture using IDATG

Figure 1 - Recommended Tool Architecture using IDATG

Test Management Tool

Tutorial IDATG Overview

2012-02-14 Page 8 / 69

A test management tool allows the tester to administer system requirements, test cases and
test results, organize test suites and manage bug-tracking.

Test Case Generator (IDATG)
IDATG (Integrating Design and Automated Test Case Generation) is designed for GUI and API
test specification and the automated generation of test cases.

Test Execution Tool
IDATG creates test scripts in a general format that can be converted into scripts for test execution
tools like QuickTest, SilkTest and WinRunner. These tools execute the test scripts by simulating
user actions (e.g., mouse clicks) and compare the actual results with the expected ones.

2.3 Test Process

Figure 2 - Test Process using IDATG

GUI Specification
The user works with a realistic image of the GUI. The image is captured directly from the screen
by IDATG's GUI Spy or it is created manually with the IDATG editors.

Task Modeling
The steps needed to perform a task are defined in the Task Flow Editor. Building blocks
(reusable tasks, sequences of steps) greatly improve the test case design (speed, maintainability).

Tutorial IDATG Overview

2012-02-14 Page 9 / 69

Test Case Generation

IDATG can generate test cases of three types: graph-oriented (system), data-oriented (system)
and state-based (unit).

Execution
Test cases generated by IDATG are then executed by a test execution tool (e.g. WinRunner,
Silk Test). After performing tests, the test execution tool produces a test report. Test reports can
later be evaluated by testers.

2.4 Important Terms

2.4.1 Window

The term window is used here as an equivalent for a GUI object. Thus, dialogs, buttons, input
fields, static texts, etc. are all equally seen as windows. Each window may contain an unlimited
number of child windows. This view corresponds to the structure of most operating systems (e.g.,
MS Windows).

2.4.2 Task

A task is derived from a functional requirement of the specified application. These requirements
are usually listed in the software requirements specification, where they can be organized in a
hierarchical tree structure. This structure can be used for the corresponding tasks too. Each task
is defined by a task flow consisting of steps.

2.4.3 Step

The basic term of the IDATG language is the step. A step can either be an atomic step containing
a single test instruction or represent an entire building block task. Atomic steps can be described
by the following information:

• The test command. For GUI testing, the test command is also called event, because it
usually represents a user input that triggers the step (e.g. a mouse click).

• The semantic conditions that must be fulfilled before the step can be executed (e.g., a
certain button must be enabled).

• The actions executed during the step (e.g. a window opens or a button becomes
disabled).

• For GUI testing, the start and destination window of the step (in other words, the focus
position before and after the step).

• For API testing, it may be necessary to define the test driver that will execute the test
command.

• The expected results are defined indirectly by introducing verify steps that contain test
commands that compare the actual results with the expected ones.

During your work with IDATG, you will encounter different forms of steps:

• Task Steps
For graph-oriented and data-oriented testing, the sequence of steps is determined by you.
You can define it in a task flow diagram.

• Transitions
IDATG also supports another test method called transition testing in which you do not define a
certain step sequence. You just enter individual steps and IDATG determines a proper

Tutorial IDATG Overview

2012-02-14 Page 10 / 69

sequence based on the semantic information you provide for the steps (only applicable for
GUI testing)

• Test Steps
IDATG can generate automatically various types of test cases that - naturally - also consist of
steps. Like tasks, test cases can be displayed as a sequence diagram.

2.4.4 Condition

Conditions are Boolean expressions that define when a certain step can be executed (for
example, in the window 'Login', it is allowed to press ‘OK’ only after ‘user name’ and ‘password’
have been entered).

2.4.5 Action

Actions are used to describe the effects of a certain step on the GUI (for example, the Login
window is closed and the main window is opened after pressing ‘OK’). These effects influence
(control) the generation of test cases.

2.4.6 Parameter

Parameters belong to tasks. They work like parameters of functions.

Tutorial Installation of IDATG and the WinRunner-AddIn

2012-02-14 Page 11 / 69

3 Installation of IDATG and the WinRunner-AddIn

3.1 System requirements

• Hardware: Pentium PC, min. 800 MHz recommended

• Operating system: Windows 98/NT/2000/XP

• Free memory space required: 256 MB

• Additional software required: Segue's SilkTest OR Mercury's WinRunner

3.2 Installation instructions

1. You have to be logged in with administrator rights before you can install new software.

2. Call the self-extracting file setup.exe that installs the IDATG files to your hard disk and

creates shortcuts in the start menu. A sample project is also included in the package.

3. If you want to run your tests with Mercury's WinRunner, you have to perform the following

steps before the test scripts can be executed:

3.1. Install WinRunner (please refer to the WinRunner documentation for instructions)
3.2. Move the directories idatginit and idatglib that can be found in your

Idatg\WinRunnerAddIn directory into the lib directory of WinRunner.

3.3. In the file script in the dat\tslinit directory of WinRunner you have to insert the line
call “idatginit” ();

WinRunner Root Directory ---
 |
 dat ---
 | |

| tslinit ---
| |
| script
lib ---
 |
 idatginit ---
 |
 idatglib ---

Tutorial Installation of IDATG and the WinRunner-AddIn

2012-02-14 Page 12 / 69

3.3 License Installation

Before you are able to use IDATG, you need a valid license for your computer. The license is PC-
specific and usually restricted to a certain version of IDATG and a limited period.

Figure 3 - Key Manager

To receive a license, just follow 3 simple steps:

• Step 1 - Start the Key Manager and press ‘Generate’. A string will be generated that contains
encoded information identifying your PC. This string is called System Information String (SIS).

• Step 2 - Copy the string into an e-mail and send it to the IDATG support. (Just select the string
with the mouse, press Ctrl+C to copy it and Ctrl+V to paste it into your e-mail).

• Step 3 - You will receive a reply e-mail containing your license key. Copy the key into the Key
Manager and press ‘Validate’. After confirming an information message, your license will be
installed.

If you wish to use IDATG on different PCs, please run the Key Manager on each of them to
generate an individual SIS for each computer.

You can start the Key Manager at any time to view information about the installed license or to
install a new one. If you should experience problems with your license or you need an update, do
not hesitate to contact the support.

Tutorial The Project 'Login'

2012-02-14 Page 13 / 69

4 The Project 'Login'
The project 'Login' is a very simple example to show a basic sequence of steps to create a test
case and transform it into a test script for a capture/repay tool.
The first step is to create a new project. After creating a new project, all information about GUI
elements, tasks, and test cases will be stored in IDATG’s xml-files.

4.1 Creating a Project

• Start IDATG by double-clicking on the IDATG icon in the Windows start menu or by executing
the file idatg.exe. Press ‘Cancel’ in the Open File dialog.

• Create a new project using the menu item ‘Project | New’.

• Enter the properties (name, appropriate GUI Builder and the desired output format) of the
project and press ‘OK’.

• Next you get a window ‘Save Project’. Enter the path where you want to store your test cases
and click ‘OK’.

 Exercise 1:

Create a new project 'Login', and set the default GUI builder to 'Visual C++' and the test-execution
tool to 'WinRunner'.

 Solution 1:

Install IDATG (see chapter 3) and start it.
Click the menu item ‘Project | New’ and enter the name “Login”.

Click ‘OK’
Click ‘OK’ in the ‘Save Project’ dialog.

Tutorial The Project 'Login'

2012-02-14 Page 14 / 69

4.2 Recording a Window with the GUI Spy

The windows of the user's application can be directly captured with IDATG's GUI Spy. You could
also define them manually with the IDATG editors, but of course, it saves a lot of work if you
simply capture them from the screen.
The GUI Spy is a very simple and efficient tool. No resource script or other source code is needed.
The usage is very similar to other GUI spies like those of the Microsoft Developer Studio or
common capture/replay tools.

Recording a window:

• Press the button .

• Start your application and place its window beside the IDATG window.

• Click left on the crosshair symbol in the GUI Spy and keep the mouse button pressed.

• Drag the crosshair symbol over some windows. Note that the window under the cursor is
highlighted with a red frame and the information about the window is displayed in the list box of
the GUI Spy. IDATG windows are ignored.

Figure 3 - GUI Spy and recorded window

• When you have reached the window you wish to record, release the mouse button. Note that
exactly the window under the crosshair symbol and its child windows are recorded, but not the
parent window.

• You may change your selection by dragging the crosshair symbol another time or confirm it by
pressing 'OK'. In this case, the new window is added to the IDATG project: it is shown in the
Application Editor, and a Window Editor is opened for the window.

 Exercise 2:

Record the main window of the example ‘Login’ as described above.

Tutorial The Project 'Login'

2012-02-14 Page 15 / 69

 Solution 2:

• Start the demo application ‘Login.exe’ in your tutorial directory.

• Open the GUI Spy of IDATG

• Drag the crosshair symbol over the Login window, and press ‘OK’ in the GUI Spy window.

This should be your result:

Figure 4 - Window Editor 'Login'

4.3 Application Editor - Window Hierarchy

Let us have a short look at the user interface of IDATG. The main tool for navigating through a
project is the Application Editor that is usually located at the left side of the IDATG window. It
contains two tab pages showing the hierarchy of the application’s windows and tasks. Most of the
other IDATG editors will appear on the right side.

As already mentioned, the term window is used here as an equivalent for a GUI object. The
hierarchy levels of the window tree represent the parent-child relationships between the windows.
The editor always contains the project as root node, from which the entire window hierarchy is
descending. Menus and menu items are also shown in the tree.

Windows that are the start state of a transition are displayed blue and their ancestors are blue as
well. This color representation allows the user to see immediately which parts of the GUI have
transitions specified.

Tutorial The Project 'Login'

2012-02-14 Page 16 / 69

Selecting a Window
Select a window by clicking on its name in the tree. Several toolbar buttons become active
that allow you to edit the behavior and properties of the window. If you click the right mouse
button, a menu of editing possibilities opens. The selection of the root node has no effect.

Editing the Window ID

Edit the ID of a window in the same way you would edit a file name in the Windows
Explorer (Select ID, press F2 or click again). It must be unique, may only contain
alphanumeric characters and ‘_’ (underscore) and may be up to 50 characters long. You

can also use the Window Properties Editor to edit the window ID. Use IDs that are
meaningful to you!

Choosing a (new) Start Window
The start window is the one that appears first when the tested application is executed. To
define or change it, simply select the desired window and press ‘Set as Start Window’ in
the ‘Edit’ menu. In the Application Editor, its name is displayed bold. This information is
necessary for the generation of GUI test cases, especially if the test execution tool is
Silktest.
Note: Only a window that has no parent and is visible and enabled can be a start window.

 Exercise 3:

In order to make the GUI description easier to understand, it is sometimes advisable to change the
window IDs that have been generated by the GUI Spy. Therefore, rename the input field
‘Pleaseenteryournamea’ to ‘Name’ and ‘Pleaseenteryournamea1’ to ‘Password’. Set ‘Login’ as the
start window.

Tutorial The Project 'Login'

2012-02-14 Page 17 / 69

 Solution 3:

• Expand the tree of ‘Login (Dialog Box)’.

• Select “Pleaseenteryournamea” in the windows pane, press F2, then type “Name”.

• Select “Pleaseenteryournamea1” and click again, then type “Password”. Or click
“Pleaseenteryournamea1” with the right mouse button and select “Edit Properties”. Then
type “password” into the Window ID and click ‘OK’.

• Click right on ‘Login’ and select ‘Set as Start Window’.

The result:

Tutorial The Project 'Login'

2012-02-14 Page 18 / 69

4.4 Defining a Task Model

In IDATG there are two kinds of tasks: Use cases and building blocks.
The basis of the task model specification is the software requirements specification of the tested
application. It should contain a detailed description of all tasks (functions) the software has to
perform from the user's point of view.

A task consists of steps. One step describes one test action:

• What (user event like select, click, input) and

• where (window like button, input field, etc.)

• A step can also refer to a building block task consisting of other steps. This allows you to
construct your task model as a modular system.

Getting started:

• Define the task hierarchy in the Task Editor using the software requirements specification or a
test specification. This hierarchy does not reflect any dependencies!

• Define the task flow of the most important use cases with the Task Flow Editor (e.g., login-do
something-logout) by drawing steps. The steps are assigned to windows or building blocks.

• Going top-down through the task hierarchy, define the task flows of all other tasks. Wherever
possible, use modular building blocks as subtasks.

4.5 Application Editor - Task Hierarchy (Task Editor)

The Task Editor shows the task hierarchy. The root node of the tree represents the project. It is
recommended to enter use cases according to the project's software requirements.

Tasks that are self-sufficient use cases are marked with the icon , whereas building blocks look

like this . A Test Case is the smallest unit that IDATG will generate and convert separately. It
should be a stand-alone test case that does not depend on any other test cases.
Tasks whose flows have already been defined are displayed blue.

Figure 5 - Application Editor - Task Hierarchy

Adding a new Task

Tutorial The Project 'Login'

2012-02-14 Page 19 / 69

• Select the parent of the new task (the project or a folder)

• Press ‘New Task’ in the toolbar or the menu if you want to create a use case. For

a building block press ‘New Building Block’ or select ‘New Building Block’ from the
context menu. The new task will be inserted as child.

Editing the Task Name

Edit the name of the task in the same way you would edit a file name in the Windows
Explorer (Select name, press F2 or click again). It must be unique, may only contain
alphanumeric characters and ‘_’ and be up to 50 characters long. You can also use the
Task Properties Editor to edit the task name.

Selecting a Task
 Simply select a task by clicking on its name in the tree.

Editing Task Properties
The properties of the selected task may be edited by choosing the menu 'Properties
Editor' or by pressing the corresponding toolbar button.

Figure 6 - Task Properties

• The Name must be unique, may only contain alphanumeric characters and ‘_’ and be
up to 50 characters long.

• The Test Level refers to the test phase according to the General V-Model in which the
resulting test cases should be used. Apart from the standard levels Unit Test,
Integration Test, System Test and Acceptance Test, you may also enter a self-defined
string.

• The Test Type can be used for a further categorization of the test cases. Apart from
the pre-defined values like Functional Test, API Test etc. you may also enter a self-
defined string.

• You can enter an arbitrary Description that explains the purpose of this task.

Tutorial The Project 'Login'

2012-02-14 Page 20 / 69

• In addition, you may enter the Path to an External Document in which information
about this task can be found. (e.g. the requirements specification document). The
'Browse…' button helps you to select the correct file.

 Exercise 4:

Create a building block ‘EnterData’ and define its properties as ‘System Test’ and ‘Functional
Test’.

 Solution 4:

1. Open the project ‘Login'
2. Choose the tab “Tasks” of the Application Editor
3. Select the project as the Parent Folder. Define the task ‘EnterData’ by clicking on the button

 or selecting the menu item ‘Draw | New Building Block’.
4. Set Name to ‘EnterData’
5. Choose ‘System Test’ for Test Level and ‘Functional Test’ for Test Type (see Figure 6 - Task

Properties)
6. Press ‘OK’
7. The result should look like Figure 5.

4.6 Task Flow Editor

In the task tree, double-click the desired task or select it and press the toolbar button 'Edit
Task Flow'. The Task Flow Editor opens and allows you to define the sequence of steps that has
to be performed to fulfill a task. In the Task Flow Editor, you can see the task flow as a directed
graph.

Figure 7 - Task Flow Editor with arbitrary steps

There are different kinds of steps, each represented by a different color:

Green: The initial step of the task flow. It is added automatically and cannot be edited or
deleted.

Light Blue: Atomic steps that represent one single activity. For GUI testing, they are
usually assigned to a window, but they can also be used for defining GUI-independent test
commands or for expressing conditions and actions. A step becomes light blue, if either the
event, start window, test commands, conditions or actions have been defined.

Tutorial The Project 'Login'

2012-02-14 Page 21 / 69

Blue: Atomic steps that are linked to a transition and are therefore only relevant to GUI
testing. Note: If you edit such a step, in fact you edit the actual transition. This is
particularly useful if the same step appears several times in your specification, since you
only have to edit it once and all instances of it (i.e. all steps that are linked to the same
transition) are changed automatically.

Yellow: Composite steps that refer to a building block. The task name is used as step
name and cannot be edited.

Light Yellow: Same as above. The lighter color signifies that the task flow of the sub task
is still undefined. IDATG tries to avoid such steps during test case generation.

Grey: Undefined steps that have not yet been assigned to a window or sub task and
contain no information about event, test commands, conditions or actions. They are
ignored during test case generation.

Steps are updated automatically after GUI changes like renaming a window, redirecting a
transition etc. Only if a window, transition or task is deleted, all steps that refer to this object
become undefined.

Selecting a Step or Connection

Steps and connections can be selected by clicking on them in the graph. The selected
object is displayed with a red frame.

Selecting more than 1 Step
Multiple steps can be selected in different ways:

1. Click on an empty area and drag a rectangle over the desired steps
2. Hold the ‘Ctrl’ key while clicking on a step to add it to the selection. This can be

useful when selecting steps from different areas of the task flow. By holding ‘Ctrl’ it
is also possible to remove steps from the current selection.

Note: The start step cannot be added to a multi-selection.

Adding a new Step after a Step

• Select the predecessor step

• Press ‘New Step’, (or right-click the predecessor step and select ‘Insert Step’ from
the context menu)

• An undefined step is created that is connected to the predecessor. If the predecessor
already had a successor, a branch is created.

Adding a new Step between two Steps

• Select the connection between the two steps

• Press ‘New Step’

• An undefined step is created between the two steps and connected to both of them.

Assigning an Object to a Step
This is the easiest method to define a step. When you select the object you want to use, IDATG
creates a default event for this step, depending on the type of object you selected.

• Select the step

• Press the toolbar button ‘Assign Object to Step’, or right-click the step and select
‘Assign Object to Step’ from the context menu.

• All other editors are now in a special waiting state. Instead of performing their usual
functions, the next selection is sent directly to the Task Flow Editor. You may select
either a task or window in the Application Editor or a window or transition in a

Tutorial The Project 'Login'

2012-02-14 Page 22 / 69

Window or Menu Editor. If you select a task, it may not be a parent or super task of
the current one.

• If the assignment has been successful, the color of the step changes accordingly.

Editing a Step

• Select the step and press the toolbar button 'Properties Editor', or double-click the
step, or right-click the step and select ‘Edit Step’ from the context menu.

• The Step Editor appears and allows you to change the step properties. Depending on
the type of step, different fields can be edited.

Viewing the Window assigned to a Step

If you want to view the window or transition that has been assigned to a step (blue), just

select the step and press the toolbar button ‘Edit Window’ or ‘Edit Menu’, or right-
click the step and select ‘Edit Window’ from the context menu.

Viewing the Sub Task assigned to a Step

If you want to view the task flow of the task that has been assigned to a subtask (yellow),

just double-click on it or select it and press the toolbar button 'Edit Task Flow'.

Copying Steps

• Select one or more steps and press ‘Copy’ in the toolbar or the menu Edit >>
Copy. CTRL+C works too. All connections between the selected steps are also copied
(but no others). The task’s start step can not be copied.

• Select a step or connection (may also lie in another task)

• Press ‘Paste’ to insert the copied steps. If a step is selected, the copied steps are
added as successors of this step. If a connection is selected, the copied steps are
added between the start and destination step of this connection.

Moving Steps

The selected steps can be moved to another location by using ‘Cut’ and ‘Paste’. The
result is equivalent to pressing ‘Copy’, ‘Delete’ and ‘Paste’.

Deleting Steps

The selected steps may be deleted by choosing the menu 'Delete' or by pressing the

corresponding toolbar button . All successors of the steps will be connected to their
former predecessors to avoid that they become isolated. It is not possible to delete the start
step.

4.7 Step Editor

If you assign a window or a task to a step in the Task Flow Editor, the step parameters like
Name, (default) Event or Start Window are set correctly by IDATG. For changing the entries, use
the Step Editor.

The Step Editor gives you the possibility to specify the semantics of your GUI. Most importantly,
you can define the trigger event for a step and define the conditions and actions associated with it.
It can be used for all types of steps and is reached in the following ways:

• Double click on a transition (blue arrow) in the Window- or Menu Editor

• Double click on a task step in the Task Flow Editor

• Double click on a test step in the Test Case Editor

Tutorial The Project 'Login'

2012-02-14 Page 23 / 69

Depending on the type of step, some buttons or fields may not always be available. For composite
task steps (yellow), a special Sub Task Editor is used.

Figure 8 - Step Editor

Name
The name must be unique, may only contain alphanumeric characters and the character
‘_’, and it can be up to 50 characters long.

Event
The event applies to the ‘Start Window’. The two most important events are Click and
Input:

• The function Click represents a mouse click on a window. The click can be
executed with either the left (L) or right (R) mouse button and may be single (1) or
double (2). The default is a single click on the left button.

Examples: Click, Click(R), Click(L, 2),

• Input signifies text input into a field or table cell. You can either provide a specific
text or call Input without parameters to express that an arbitrary value that matches
the field’s syntax is entered.

Examples: Input, Input("MyText").

 Exercise 5:

Define the three steps of the task ‘EnterData’: Enter a name and a password and press OK.

Tutorial The Project 'Login'

2012-02-14 Page 24 / 69

 Solution 5:

1. Open the Task Flow Editor of ‘EnterData’ by double-clicking it or clicking .

2. Create three new steps by clicking , (or if you prefer,
 Click right on ‘Start’ and select ‘Insert Step’
 Click right on ‘New Step’ and select ‘Insert Step’
 Click right on the last step or on a connection between the steps and select ‘Insert Step’)

3. Select the first step, then click (assign object to step), open the screenshot of the
window ‘Login’, and click on ‘Name’.

4. Click (edit properties) to open the Step Editor, and enter a value for Name (see below)

5. Click “OK” to close the Step Editor.
6. In the same way, specify the steps for Password and OK.
7. Now your Task Flow should look like the screenshot below, and ‘EnterData’ in the

Application Editor is displayed blue.

Tutorial The Project 'Login'

2012-02-14 Page 25 / 69

4.8 Task Parameters Editor

A building block can be compared to a function in a programming language. After defining the
function prototype including the number and type of its parameters, the function can be called with
different parameter values that affect the function's result. In the same way, the Task Parameters
Editor can be used to define a "task prototype". Each time the building block is used as a sub
task, different values may be passed to the parameters. See also section 4.10 about the Sub
Task Editor.

To open the Task Parameters Editor, press ‘Parameters…’ in the Task Editor of a building block.

Creating a new Parameter

• Press ‘New’

• Enter name, type and default value. The name may only contain alphanumeric characters
and ‘_’ and may be up to 30 characters long. The syntax for the default value depends
on the selected type and is the same as for attributes. Please do not quote strings with ""
unless the quotes are part of the value.

• Press ‘Set’. It is checked whether the name is unique and the default value corresponds to
the selected type. If not, a message box appears and the focus moves to the invalid field.

Selecting a Parameter

Click on a parameter name in the list

Editing a Parameter

• Select a parameter in the list. Its properties are shown in the corresponding fields and can
now be edited.

• Edit name, type and default value.

• Press ‘Set’. It is checked whether the name is unique and the default value corresponds to
the selected type. If not, a message box appears and the focus moves to the invalid field.

Deleting a Parameter

• Select a parameter in the list.

• Press ‘Delete’. A message box appears that has to be confirmed by the user. (”Do you
really want to delete this parameter?“)

Tutorial The Project 'Login'

2012-02-14 Page 26 / 69

 Exercise 6:

Create parameters for the task ‘EnterData’ according to the picture below.

Figure 9 - Task Parameters Editor

 Solution 6:

1. Select the task ‘EnterData’, open its Properties Editor, and click the button ‘Parameters…’
2. Enter “p_Name” in the Name edit field, and “Max Musterfrau” as value
3. Click ‘Set’
4. Enter “p_password” in the Name edit field, and “357” as value.
5. Click ‘Set’
6. Click ‘OK’ to close the Parameters Editor, and ‘OK’ in the Task Properties Editor.

4.9 Replacing Static Values with Parameters

Edit each step where you want to use a parameter, replacing your static values with parameters.
The syntax is #@TaskName:Parameter#.

• Open the Step Editor (double-click the step, press (edit properties) or select the menu
‘Window|Properties Editor)

• Delete your argument in the event edit field (in case there is one already)

• Position the cursor in the event edit field

• Click ‘Browse Designators’ and choose your parameter (double click it)

Tutorial The Project 'Login'

2012-02-14 Page 27 / 69

• Make sure that the parentheses are set correctly around the argument of your event (the
parameter)

4.10 Sub Task Editor

The Sub Task Editor is used for task steps that represent a building block (yellow steps). The
name of such a step is always the name of the block and cannot be edited. This editor serves to
define the values of the sub task's parameters.

Tutorial The Project 'Login'

2012-02-14 Page 28 / 69

Figure 10 - Sub Task Editor
Editing Parameter Values

If you have defined parameters for the sub task using the Task Parameters Editor, you
can enter their values here. Using sub tasks can be compared to calling a function in a
programming language. You can pass different parameter values to the sub task every
time you use it in a task flow.

• Select a parameter in the list

• Enter the new value. The value can be an arbitrary expression and must have the
correct type. If you do not enter a value, the default value is used.

• Press 'Set'. The value is checked for syntactic correctness.

• If more parameters are available, the next one is selected automatically.

 Exercise 7:

Change the task ‘EnterData’ so that Name and Password are set using parameters. Create a test
case ‘TC_EnterData’ and add two parallel steps to it. Assign them both to the task ‘EnterData’.
Now define the parameter values using the default values for the first one and empty (invalid)
strings for the second one.
During test execution, an error message box will appear in the second branch, so use the GUI Spy
for capturing the box and add a step for quitting it.

 Solution 7:

1. Open the project ‘Login'
2. Open the Task Flow Editor of ‘EnterData’

3. Select the step ‘Name’ and press the button or double-click on the Step

Tutorial The Project 'Login'

2012-02-14 Page 29 / 69

4. Set the Event to Input(#@EnterData:p_Name#) or press the button ‘Browse Designators’
and select the parameter ‘p_Name’ (Project Login | PARAMETERS OF TASK EnterData |
p_Name) and double-click it.

5. Click ‘OK’
6. For the step Password, set the event to Input(#@EnterData:p_password#)

7. Create a use case TC_EnterData: Select ‘Project Login’ and press . Rename the
NewTask1 to ‘TC_EnterData’.

8. Add the task ‘EnterData’ twice to the ‘TC_EnterData’

• open the task flow editor of ‘TC_EnterData’ by double-clicking it

• add a new step (right click on task step ‘Start’, select ‘Insert Step’)

• assign the task ‘EnterData’ to this step

• add a new step (right click on task step ‘Start’, select ‘Insert Step’)

• assign the task ‘EnterData’ to this step

9. Select the second ‘EnterData’ sub task (composite step) and press the button

 or press the right mouse button and click ‘Edit Step’
10. Now the Sub Task Editor opens

Tutorial The Project 'Login'

2012-02-14 Page 30 / 69

11. Set the values as shown on the screenshot value= “” (empty)

12. To capture the message box, start ‘Login.exe’ and click ‘OK’ without entering a name.
Capture the window ‘Login Error’ (see chapter 4.2).

• Right-click on the second ‘EnterData’ task, select ‘Insert Step’

• Click (Assign Object to Step)

• Select the Windows tab, click on ‘Application Login|LoginError|OK1’

• As ‘OK1’ is not a mnemonic step name, change it to ‘OK_ERROR’ (edit step).

Your result should look like this:

Figure 11 – Task Flow of TC_EnterData

In the first test case, where you enter correct data, you receive a message that the password is
okay.

Tutorial The Project 'Login'

2012-02-14 Page 31 / 69

 Exercise 8:

Add the window ‘Login Message’ to your GUI map, and add a step to confirm the message.

 Solution 8:

• Start ‘login.exe’

• enter a name and any password, cklick ‘OK’

• record the message window ‘Login Message’ by clicking in IDATG and dragging
over the message window. Click ’OK’ in the GUI Spy window.

• In the Task Flow of Task ‘TC_EnterData’ select the yellow subtask ‘EnterData’ which sets

correct data. Click and then .

• Select ‘LoginMessage | OK2’ in the Windows pane of the application editor.

• double-click the blue step OK2 and change its name to ‘OK_Password’ (not necessary, but
recommended)

4.11 Generating Task-based Test Cases

From the task model the Test Case Generator generates test cases that cover all functions
defined in the task model and are suited for system testing.

You can decide whether the generated test cases should only cover all task steps or also all
connections between them thus achieving an even better test coverage.

• Select the desired task and press the button .

Figure 12 – Test Case Generation

• Decide if you want to generate test cases only for the selected element or for the whole
application (in our example the result is the same).

• Press OK

• Confirm the success message

Tutorial The Project 'Login'

2012-02-14 Page 32 / 69

4.12 Converting Test Cases

• Select the desired task and call the Test Case Converter .

• Supply the command line to call the application under test.

• Select the Output Format according to your tool from the droplist

• Press ‘OK’

• Confirm the success message

For WinRunner, the following files are generated:

- A GUI Map containing a description of all GUI objects
- Test scripts containing the test cases in the tool-specific language
- A main script that calls all other scripts

With these test scripts, you can start the test with your capture-replay tool.

If you have not generated the test scripts yet, do it now:

 Exercise 9:

1. Generate test cases for ‘TC_EnterData’.
2. Convert the test cases and run the test.

 Solution 9:

• Select ‘TC_EnterData’

• Press (Generate Test Cases) or right-click ‘TC_EnterData’ and select ‘Generate Test
Cases’ from the context menu or choose menu ‘Generate | Generate Test Cases’.

• Confirm the window ‘Confirm Changes’ by pressing ‘OK’.

• Confirm the ‘Test Case Generation’ Window by pressing ‘OK’

• Confirm the window ‘Test Case Generation Status’ by pressing ‘OK’

• Press

• Confirm the window ‘Confirm Changes’

• Provide the command line for the application ‘Login’, Path\Login.exe

• Select the Output Format

• Click ‘OK’

• Confirm the conversion message ‘2 Test Case(s) converted!’

• If available, start your GUI testing tool and execute the generated script

Your first project ‘Login’ is finished now.

4.13 Summary

In this chapter you have learned to record a GUI, define a task model and generate task-based
test cases. After converting the test cases, you can run them with your capture/replay tool.

Tutorial Project Tennis

2012-02-14 Page 33 / 69

5 Project Tennis
The application ‘Tennis’ serves to administer tennis tournaments. Before continuing, please start
tennis.exe and make yourself acquainted with it. Note that the program contains a number of

intentional bugs.

All exercises assume that IDATG and tennis.exe are started and that you have accomplished

all former exercises.

You will have to implement the following test cases:

Regular test cases
TC_R1: Create a new tournament
TC_R2: Create several players
TC_R3: Assign players to a tournament
….

Error test cases
TC_E1: Wrong tournament dates (end before beginning)
TC_E2: Assign a female player to a men’s single tournament
…..

5.1 Recording the GUI

Start modeling your use cases by recording the GUI of your AUT (application under test). For your
convenience you should check immediately whether all windows have names that are easy to
remember. If necessary, change them.

 Exercise 10:

• Create a new project ‘Tennis’

• Record the start window

 Solution 10:

• Select menu ‘Project >> New …’ or press ‘Ctrl+N’

• In the Project Administration window enter ‘Tennis’ as name, and leave Default GUI builder
and Default Output Format as they are. Press ‘OK’.

• Start tennis.exe

• Invoke the GUI Spy by clicking on its icon

• Drag the crosshairs over the window ‘Tennis – Tournaments’ until it is highlighted by a red
frame

• Click ‘OK’ in the ‘GUI Spy’

First of all, let’s define the newly recorded window as start window. Just click right on
‘TennisTournaments’ and select ‘Set as Start Window’. Now expand the tree nodes ‘Project
Tennis’, ‘Tennis Tournaments’, ‘MDIClient’, ‘Tournaments’ and ‘ID 32770’. This is what you
(should) see:

Tutorial Project Tennis

2012-02-14 Page 34 / 69

There are several windows starting with ‘AfxControlBar..’. Most likely you will never need them in
your tests, so delete them to increase the overview (if you really need them later on, it is still
possible to add them again, either by recording or by drawing).

If a window has no caption, the GUI Spy uses the class name as window ID. For your own
convenience, you should rename such windows using meaningful IDs. For example: The window
‘tree1’ can be renamed to ‘TournamentCalendar‘ using the Window Properties Editor. Other
candidates are the fields ‘TournamentData..’. To see what they are, open the Window Editor of
their parent:

• right click on ‘ID 32770’ and select ‘Edit Window’ or

• double click ‘ID 32770’, or

• select ‘ID 32770’ and choose menu ‘Window >> Window Editor’, or

Tutorial Project Tennis

2012-02-14 Page 35 / 69

• select ‘ID32770’ and click the icon ‘Edit Window’).

Now you can give them appropriate IDs.

Window Editor of ‘ID 32770’ before changing window IDs

Your possibilities to edit the ID are:

• like in the Windows Explorer, select the item in the windows pane and click it again

• right click the item (in the windows pane or the windows editor) and choose ‘Edit
Properties’ from the context menu

• select the item and click the toolbar button ‘Edit Properties’

• select the item and choose the menu ‘Window >> Properties Editor’

The name must be unique, may only contain alphanumeric characters and the character ‘_’, and it
can be up to 50 characters long.

Tutorial Project Tennis

2012-02-14 Page 36 / 69

Window Editor of ‘ID 32770’ after editing the window names

 Exercise 11:

Change the window IDs according to the above picture and set ‘Tennis Tournaments’ as start
window.

 Solution 11:

Choose one of the methods above and edit the window IDs.

5.2 Searching for a window

Now what about the ‘msctl_statusbar32’ (in the Application Editor, Windows pane)? What happens
if you try to change the ID to ‘Statusbar’?
An error message pops up, telling you that a window with ID Statusbar already exists. To find out
where this window is, use the search function. IDATG provides a context-sensitive search function.

If the window pane is open, the menu ‘Edit >> Search Object’ or clicking on will open the
dialog ‘Search Window’. (In case you are in the task pane, it will open ‘Search Task’.) When a
window is selected, you are prompted to search for a window that is a child of the selected one,
otherwise it is searched in the whole application.

 Exercise 12:

Find the window ‘Statusbar’

 Solution 12:

Tutorial Project Tennis

2012-02-14 Page 37 / 69

• As you have no expectation yet where this window belongs, select the entire ‘Project
Tennis’ and open the search window by one of the above mentioned methods.

• Type ‘Statusbar’ into ‘Window ID’ and click ‘OK’. Note that any combination of search
criteria is possible, as well as entering only the beginning of the ID or caption (e.g. ‘Stat’).

• The tree ‘ApplicationTennis’ is expanded and the window ‘StatusBar’ is selected. Now we
see that ‘StatusBar’ is actually a menu item.

Please note that the window IDs are not case sensitive.

Now you can make a qualified decision about the IDs you want to use. In our example we leave
the msctls_statusbar32 as it is.

5.3 Recording Tab Pages

To continue our example:

• In the Tennis application, open the window ‘Players’ by selecting the menu ‘View >>
Players’.

• Record the window (only the child window; the main window is recorded already)

• Click ‘New Player’

• Record the window ‘Player Data’

• Expand all nodes of the window ‘PlayerData’ in the Windows pane of the Application Editor

Tutorial Project Tennis

2012-02-14 Page 38 / 69

Note: Idatg always puts newly recorded windows on the highest hierarchical level. If your replay
tool is WinRunner, this is not a problem, since WinRunner knows only two hierarchical levels in the
GUI-map (windows and objects).
However, if your replay tool is SilkTest, you have to drag the windows under their actual parent
(TennisTournaments >> MDIClient for “Players”, TennisTournaments for “PlayerData”) because
SilkTest needs the hierarchy information for identification. You can find out where a window
belongs by checking the include-files of SilkTest.

The three tab pages of ‘PlayerData’ are shown as independent dialog boxes, and there is also a
SysTabControl32. The relation between these items cannot be recorded, therefore it has to be
edited manually.:

• Open the Properties Editor for SysTabControl32

• Click the button ‘Tab Pages…’

• Enter the caption of the first tab page (Team Data), exactly as in the application, into ‘Title
of tab page’

• Set ‘ID of opened window’ by browsing for the corresponding window (TeamData)

• Check ‘Initial Page’ to specify that this is the first of the three tab pages

• Click ‘Set’ to save this information

• Click ‘OK’ twice to close the Tab Editor and Properties Editor

Tutorial Project Tennis

2012-02-14 Page 39 / 69

 Exercise 13:

Enter the three tab pages of the window ‘PlayerData’

 Solution 13:

• Open the Properties Editor for SysTabControl32

• Click the button ‘Tab Pages…’

• Enter the caption of the first tab page (Team Data), exactly as in the application, into ‘Title
of tab page’

• Set ‘ID of opened window’ by browsing for the corresponding window (TeamData)

• Check ‘Initial Page’ to specify that this is the first of the three tab pages

• Click ‘Set’ to save this information

• Enter the caption of the next tab page (Personal Data), exactly as in the application, into
‘Title of tab page’

• Set ‘ID of opened window’ by browsing for the corresponding window (PersonalData)

• Click ‘Set’ to save this information

• Enter the caption of the last tab page (Ranking), exactly as in the application, into ‘Title of
tab page’

• Set ‘ID of opened window’ by browsing for the corresponding window (Ranking)

• Click ‘Set’ to save this information

• Click ‘OK’

• Click ‘OK’ to close the Properties Editor

Tutorial Project Tennis

2012-02-14 Page 40 / 69

5.4 Radio Button Groups

Radio Buttons never appear single, they always form a group that is usually surrounded by a
group box (like in the windows ‘Personal Data’ and ‘Players1’). Checking one radio button causes
all other buttons in the group to become unchecked. Therefore the caption of the checked radio
button in the group is seen as its value. The individual radio buttons do not have a value of their
own. If you encounter a group of radio buttons that is not surrounded by a group box, please draw
one in the Window Editor. IDATG needs this information to generate correct events.
Now look at the Group Box ‘Sex’ in ‘Players1’ (open the Properties Editor for Sex_GRP). You find
a property ‘Initial Value’ and a drop list containing the buttons that belong to this group. Here you
can set the default button according to your application.

 Exercise 14:

Set the Initial Value of Sex_GRP to ‘AllPlayers’.

 Solution 14:

• Select “Sex_GRP” in the windows pane of the application editor

• open the properties editor

• choose “All Players” from the Droplist “Initial Value”

• press “OK”

As you have already defined your windows, you can go on to define your tasks.

Tutorial Project Tennis

2012-02-14 Page 41 / 69

5.5 Task flow

 Exercise 15:

Create building blocks for the 3 regular test cases described at the beginning of chapter 5 (do not
define the task flows yet). Combine these tasks into a logical sequence (new tournament, 2 new
players, assign players to tournament) in the task flow of the “TC_R3_AssignPlayers”.

 Solution 15:

1. Click the “Tasks” tab in the Application Editor
2. Select “Project Tennis”

3. Create a new building block by clicking the toolbar button
4. Rename the task to “NewTournament”
5. Repeat steps 1 to 4, renaming the tasks to “NewPlayers” and “AssignPlayers” respectively.

6. Create a new use case by selecting “Project Tennis” and clicking , and rename it
“TC_R3_AssignPlayers”.

7. Open the task flow of “TC_R3_AssignPlayers” by double-clicking it
8. Insert a new step and assign it to “NewTournament”
9. Add 2 instances of “NewPlayers” and 1 of “AssignPlayers” to the task flow of

“TC_R3_AssignPlayers”.

In the tree the task names are written in black, and in the task flow the steps are light yellow, both
indicating that the tasks steps are not defined yet.

Next you define the steps for these tasks:
Double click the task you want to define, NewTournament. The task flow editor opens and shows
a start step (green), already selected (indicated by the red frame). Click right on the step and
select “New Step” from the context menu. A new step is added to the task flow, connected to the
step that was selected before. It is grey, indicating that it is not yet defined, and has a red frame
indicating that it is selected.

5.5.1 Task Step Editing

You already learned to assign an object to a step (see Task Flow Editor and Step Editor) and to
define a step this way. Of course you could enter all data manually, too, using the Step Editor.
Open it by either double-clicking a step or by right clicking on a step and selecting “Edit Step” or by

selecting a step and clicking . This is what you get:

Tutorial Project Tennis

2012-02-14 Page 42 / 69

Type any name, enter an event, and enter the object (=window) on which to perform the event.
Clicking the button ‘Browse Designators’ allows you to select the start or destination window from
the windows pane.
A step is considered to be defined if it either has an event or ‘Commands for Test Script’ defined.

For the more convenient way close the Step Editor again (click “Cancel”).

• Open the window on which you want to perform user actions in the Window Editor (here it
is Application Tennis >> Tennis Tournaments >> MDIClient >> Tournaments >> ID32770,
the immediate parent of all the edit fields we need to create a new tournament).

• Now right click on the step you want to define and select “Assign object to step” from the

context menu (or select the step and click the toolbar button).

• Then click on the GUI element in the Window Editor, in our example “Name”.

Now the step is shown in blue, which indicates that it is already defined. Open the step for editing

by either right clicking on the step and selecting “Edit Step” or by selecting it and clicking .
IDATG created the default event ‘Input’ without an input string. Enter one between brackets and
quotes.

 Exercise 16:

Create and define all steps necessary to define a tournament (NewTournament).

 Solution 16:

• Open the window Application Tennis >> Tennis Tournaments >> MDIClient >>
Tournaments >> ID 32770 by double-clicking it.

• Select ‘NewTournament’ in the task pane and click (Edit Task Flow).

Tutorial Project Tennis

2012-02-14 Page 43 / 69

• Click (New Step) and (Assign Object to Step).

• Click on the input field ‘Name’.

• Double-click the step ‘Name’ and enter the string (“Wimbledon”) after ‘Input’ in the event
field.

• Click ‘OK’ in the Step Editor. The editor is closed, and the step is still selected.

• Click (New Step) and (Assign Object to Step).

• Click on the Input field ‘Location’.

• Double-click the step ‘Location’ and enter the string (“England”) after ‘Input’ in the event
field. Click ‘OK’.

• Click (New Step) and (Assign Object to Step).

• Click on the Input field ‘DateFrom’.

• Double-click the step ‘DateFrom’ and enter the string (“2006-06-13”) after ‘Input’ in the
event field. Click ‘OK’.

• Click (New Step) and (Assign Object to Step).

• Click on the Input field ‘DateUntil’.

• Double-click the step ‘DateUntil’ and enter the string (“2006-07-01”) after ‘Input’ in the
event field. Click ‘OK’.

• Click (New Step) and (Assign Object to Step).

• Click on the combo box ‘Surface’.

• Double-click the step ‘Surface’ and enter the string (“Grass”) after ‘Select’ in the event field.
It has to be spelled exactly as in the application. Click ‘OK’.

• The field ‘PrizeMoney’ is not obligatory, so we leave it blank.

• Click (New Step) and (Assign Object to Step).

• Click on the Check Box ‘MenSingle’.

• The default event is ‘Check(TRUE)’, so there is no need to edit the step.

• Click (New Step) and (Assign Object to Step).

• Click on the Push Button ‘Save’.

• The default event for Push Buttons is ‘Click’, so that’s okay.

A task flow like this is not suited to be used as a subtask because it assumes that the window
‘Tournaments’ is already open. We have to add another step to make sure it is opened.

 Exercise 17:

Insert a step that makes sure the window ‘Tournaments’ is opened.

 Solution 17:

• Select the connection between ‘Start’ and ‘Name’

• Click (New Step) and (Assign Object to Step).

• Select ‘Tournaments1’ from the windows pane of IDATG (Tennis Tournaments >> Menu
>> View >> Tournaments1).

is the resulting task flow.

Tutorial Project Tennis

2012-02-14 Page 44 / 69

5.6 Conditions, Actions and Attributes

You may have wondered already about the purpose of the two buttons ‘Conditions…’ and
‘Actions…’ in the Step Editor. They are used for regulating the test case generation.

Imagine you want to make sure that only male players can be assigned to men’s tournaments and
only females to ladies’ tournaments. One possibility would be to design a test case for ‘Men’, and a
parallel one for ‘Women’. However, it is also possible to reach this goal with a single test case:
We just have to remember the sex of the selected player in a user-defined variable (“attribute”)
and to select the matching tournament accordingly.

5.6.1 Creating Attributes

• Open the Attributes Editor by selecting the menu item “Window >> Attributes Editor”

• Enter ‘Sex’ into ‘Name’ and ‘male’ into ‘Start Value’.

• Click ‘Set’.

• Now enter ‘TournamentType’ into ‘Name’ and ‘MenSingle’ into ‘Start Value’.

• Click ‘Set’.

This is what you get when you select the attribute ‘TournamentType’:

Click “OK” to close the Attributes Editor.

5.6.2 Setting Conditions

Now we use the attribute ‘Sex’ in some steps. First we make the tournament type depending on
the ‘Sex’ attribute:

• Select the step ‘MenSingle’ and open its Step Editor

• Click ‘Conditions…’

• Click ‘Browse Designators’

Tutorial Project Tennis

2012-02-14 Page 45 / 69

• Expand ‘# Global Attributes’ and select ‘# :Sex (String)’

• Click the ‘OK’ button

• Add the condition: ‘#:Sex#="male"’

• Click ‘Set’

• Click ‘OK’ twice

As a result IDATG will generate this test case only when the attribute ‘Sex’ has the value ‘male’.
Attributes and Conditions have no influence on the execution of the test cases.

Now we create test steps for women’s tournaments.

• Select the task step ‘Surface’ and insert a new step

• Assign the window ‘WomenSingle’ to this step

• Set the condition #:Sex# = “female”

Create another test step and assign ‘WomenDouble’ to it. You do not need to set the condition
#:Sex# = “female” again, as this test step is generated only when the whole path can be
generated, and the condition is already set.

Connect the step ‘WomenDouble’ with the step ‘Save’ (Use or ‘Draw >> Connect Steps’ or
right click and choose ‘Connect Steps’ from the context menu.).

The resulting task flow is:

Now you can generate two different test cases, depending on the value you assign to the attribute
‘Sex’.

5.6.3 Setting Attribute Values with Actions

One way to set an attribute is to define an initial value, like we did above. Else you can define an
action that sets the attribute.

• Select the start step of NewTournament and press ‘New Step’.

• Open the Step Editor

• Click ‘Actions…’

• Select ‘SetAttribute’ from the Available Actions in the Action Editor. You are prompted to
enter the name of the attribute, or to browse for it.

• Click ‘Browse Designators’

• Expand ‘Global Attributes’ and double click ‘Sex’.

• Click ‘Set Argument’ in the Action Editor. The name-argument is set.

• Enter “female” for the Value-argument.

• Click ‘Set Argument’. Both arguments of the SetAttribute function are defined.

• Click ‘Set >>’. The action SetAttribute (#:Sex#, “female”) is shown in the ‘Selected Actions’
pane.

Tutorial Project Tennis

2012-02-14 Page 46 / 69

• Click ‘OK’ in the Action Editor. You are back in the Task Step Editor.

• Enter ‘SetFemale’ as Name of the step.

• Click ‘OK’ in the Step Editor.

• Connect the step ‘SetFemale’ to the step ‘Tournaments1’

Now IDATG would generate 2 test cases, one for male and one for female. What about mixed
tournaments? You need a third value, because ‘male AND female’ will never be true, and ‘male
OR female’ is always true.

There is another place where the sex is relevant in this application: when creating and editing
players.

 Exercise 18:

Define the first part of the task flow of ‘NewPlayers’ that opens the new player dialog and sets the
sex of the player according to the actual value of the attribute ‘Sex’.

Tutorial Project Tennis

2012-02-14 Page 47 / 69

 Solution 18:

• Double click ‘NewPlayers’ in the task pane to open the Task Flow Editor.

• Click (New Step) and (Assign Object to Step).

• Select ‘Tennis Tournaments’ >> ‘Menu’ >> ‘View’ >> ‘Players’ from the windows pane

• Click (New Step) and (Assign Object to Step).

• Select ‘Players1’ >> ‘ID327701’ >> ‘NewPlayer’ from the windows pane

• Open the Window Editor for ‘PlayerData’

• Select the last step of the task flow, click (New Step) and (Assign Object to Step)

• Select ‘PlayerData’ >> ‘Female’ by clicking on the radio button ‘Female’. Note that the step
is assigned to the radio group Sex_GRP1 and not to the radio button itself (see 5.4).

• As ‘Female’ should be set only when the attribute ‘Sex’ has the value ‘female’, you have to
define a condition. Open the Step Editor and click the button ‘Conditions…’

• Click ‘Browse Designators’

• Select ‘GLOBAL ATTRIBUTES >> Sex’ in the Designator Selection window and click ‘OK’.

• Edit the condition to make it ‘#:Sex#=”female” and click ‘Set’.

• Click ‘OK’

• Change the step name to ‘SexFemale’ and click ‘OK’

• Select the step ‘NewPlayer’ in the task flow, click (New Step) and (Assign Object to
Step)

• Select ‘PlayerData’ >> ‘Male’ by clicking on the radio button ‘Male’.

• As ‘Male’ should be set only when the attribute ‘Sex’ has the value ‘male’, you have to
define a condition. Open the Step Editor and click the button ‘Conditions…’

• Click ‘Browse Designators’

• Select ‘GLOBAL ATTRIBUTES >> Sex’ in the Designator Selection window and click ‘OK’.

• Edit the condition to make it ‘#:Sex#=”male” and click ‘Set’.

• Click ‘OK’

• Change the task name to ‘SexMale’ and click ‘OK’

The remaining input fields will be edited using parameters.

Tutorial Project Tennis

2012-02-14 Page 48 / 69

5.7 Parameters (again)

Tasks (building blocks) can have parameters that get specific values each time a task is used as a
subtask in a task flow. This way one and the same task can be used for entering different data into
edit fields.

5.7.1 Defining Parameters

As you already know from the Login example, there is an editor for parameters. You open it by
right clicking a task in the task pane, selecting ‘Edit Properties’ and clicking ‘Parameters…’ in the
Task Properties Editor. Do so for the task ‘NewPlayers’. We will create parameters for all
obligatory input fields.

Enter ‘FirstName’ in the name field and ‘First1’ into the Value field. Click ‘Set’. The parameter is
displayed in the upper window. Our second parameter is called ‘LastName’ and gets the value
‘Last1’. Next we define ‘DateBirth’, still of type ‘String’, with the value ‘1981-1-1’. If you want to edit
a parameter, select it; now it is shown in the editable fields. For undoing changes, click ‘New’.
Click ‘OK’ twice to add your parameters to the task and to close the Task Properties Editor.

5.7.2 Using Parameters

Whenever you use a task with parameters in a task flow, you can open the Sub Task Editor by
right clicking on the sub task (yellow step) and selecting ‘Edit Step’. All parameters defined are
offered for setting their values.

Now open the Task Flow Editor for the ‘TC_R3_AssingPlayers’ (double click
‘TC_R3_AssingPlayers’ in the task pane). Right click on the first instance of ‘NewPlayers’ and
select ‘Edit Step’. The Sub Task Editor opens and the task parameters are offered for setting their
values. Confirm the default values by clicking ‘OK’.
Since a tennis tournament is not much fun without at least 2 players, we will now create a second
player with a different name and date of birth. Right click on the second instance of ‘NewPlayers’
and select ‘Edit Step’. This time change the values to ‘First2’, ‘Last2’ and ‘1982-2-2’. Edit the
values and click ‘Set Value’.

Tutorial Project Tennis

2012-02-14 Page 49 / 69

Click ‘OK’ to confirm the new values.

Until now the parameters are not used in any task steps. Open the task flow of ‘NewPlayers’ by
double-clicking on one of its instances, insert a new step after ‘SexMale’ and assign it to
‘PlayerData >> FirstName’. Open the step for editing (right click, ‘Edit Step’), put the cursor in the
Event field (it says ‘Input’ already) and click ‘Browse Designators’. The Designator Selection
window shows the parameters of task NewPlayers. Double click ‘# :FirstName (String)’. Please
correct the syntax by setting the brackets.

Tutorial Project Tennis

2012-02-14 Page 50 / 69

Click ‘OK’. Since entering a name is also required for female players, please create a connection
between ‘SexFemale’ and ‘FirstName’.

 Exercise 19:

Create a step to input ‘LastName’ using the corresponding parameter.

 Solution 19:

5.7.3 Parameters in Embedded Tasks

Until now we have only entered the name and sex of the players. However, the window ‘Player
Data’ also contains three tab pages for entering additional data. In order to achieve a clearer test
structure, we will create separate tasks for the input into each tab page. It does not really matter
where we put these tasks in the task tree because this decision does not influence the task flow. In
our example, we put them into a folder we call ‘Player Input’.

• Select ‘Project Tennis’ in the task pane and click (New folder). Call it ‘Player Input’

• Right click ‘Player Input’ and select ‘New Building Block’. Name it ‘TeamData’ and click ‘OK’.

• Right click ‘Player Input’’ and select ‘New Building Block’. Name it ‘PersonalData’ and click
‘OK’.

• Right click ‘Player Input’’ and select ‘New Building Block’. Name it ‘Ranking’ and click ‘OK’.

Open the task flow of ‘NewPlayers’, create a new step at the end and assign it to the new task
‘TeamData’. Do the same for ‘PersonalData’ and ‘Ranking’.

In the first tab ‘Team Data’ the field ‘Nationality’ is obligatory. To be able to create a new player,
we now define the task flow of task ‘TeamData’ using fixed values.

Double click ‘TeamData’ in your task tree. The name is still black, but a new Task Flow Editor is

opened. Add a new step () and assign the field ‘PlayerData >> PlayerData1 >> TeamData >>

Tutorial Project Tennis

2012-02-14 Page 51 / 69

Nationality’ to it. Now double-click the step and set the event to ‘Input(“Austria”)’. Click ‘OK’. Note
that the task name in the tree turned blue.

Now we will define the task flow of the second tab ‘Personal Data’, but this time using a
parameter. In this tab page we need to enter the date of birth. Open the Task Properties Editor for
‘PersonalData’ and click ‘Parameters…’. Create a parameter ‘DateBirth’ of type string (you can
leave the default value empty). Then click ‘Set’ and ‘OK’. Click ‘OK’ in the Task Properties Editor
as well.

Now open the task flow of ‘NewPlayers’, right click on the step ‘PersonalData’ and select ‘Edit
Step’. Remember that the task ‘NewPlayers’ also has a parameter ‘DateBirth’. We have to pass
the value of this parameter to the task ‘PersonalData’. Use ‘Browse Designators’ to select #@
NewPlayers:DateBirth# and press ‘Set Value’ followed by ‘OK’.

Now we have to define the task flow of ‘PersonalData’: First we have to add a step that changes
the current tab page. This can be achieved by assigning it to the tab control ‘PlayerData >>
PlayerData1 >> SysTabControl32’ and setting the event to ‘Select (“Personal Data”)’. Then we add
a second step, assign it to the window ‘PlayerData >> PlayerData1 >> PersonalData >>
DateofBirth’ and give it the event Input (#@PersonalData:DateBirth#).

The 3

rd
 tab ‘Ranking’ does not contain any obligatory fields, so we can leave it blank for now.

However, we need to add a click on the ‘OK’ button at the end of the task ‘NewPlayers’. Be careful
when selecting the OK button: The button we need is directly below ‘PlayerData’ in the window
hierarchy, but there is another ‘OK’ button one level below in ‘PlayerData1’. You might wonder
where this button comes from, since it is not visible in the Tennis application. The explanation is
that sometimes the application’s GUI builder generates objects that only become visible under
special circumstances. IDATG records all of these objects, even if they are invisible.
The task should now look like this:

For practicing, we recommend that you finish the missing part ‘Assign players to tournament’ on
your own. Of course, you can also invent your own test cases.

Note: Always make sure your AUT is closed (set to initial state) by the test script, so that each test
case can start from a well defined starting point. Therefore: Create a building block
‘Close_Tennis_Tournaments’ with one step that closes the Tennis application.

Tutorial Project Tennis

2012-02-14 Page 52 / 69

5.8 Test Execution

Within IDATG all windows are identified by their ID, but the test execution tools need more
‘physical’ information to identify them. WinRunner uses ‘Properties’ to assemble unique
identification descriptions. IDATG uses the information that you can see in the Window Properties
Editor to create descriptions that are sufficient for the test execution tools. Within IDATG these
descriptions are called ‘Tags'. Where appropriate, the caption of a window is included in the tag.

Now we are finally ready to generate test cases! Just select the 'Project Tennis' item and press
‘Generate Test Cases’. IDATG produces 2 test cases: one of them creates a ladies’ tournament
and 2 female players, the other one a men’s tournament and 2 male players. You can convert
these test cases into scripts (you have to specify the path to tennis.exe) and try to run them with
the test execution tool of your choice.

 Exercise 20:

Generate all test cases for the project ‘Tennis’ and convert them for your test execution tool.

 Solution 20:

For help on generating and converting test cases see page 32, solution 8.

5.8.1 Resolving GUI Recognition Problems

IDATG always tries to generate perfect tags for all GUI objects, however, there are some rare
cases that cannot be handled automatically and make it necessary to edit the window tags
manually.

The general method for resolving such problems is as follows:

• Analyse the problematic object with the GUI Spy of your test execution tool and determine the
tag that is expected.

• Modify the object’s tag in the IDATG Window Properties Editor accordingly.

• Convert and execute the test cases again.

For instance, if you try to run the Tennis test cases using WinRunner, you will encounter a typical
problem: One of the objects (in this case, the OK button in ‘PlayerData’) is not found correctly. A
look at the WinRunner GUI Map explains the problem: As we already know from the last chapter
there are 2 OK buttons, which causes IDATG to add the line ‘location: 0’ and ‘location: 1’ to their
GUI Map descriptions. However, since the button with location=0 is currently invisible, WinRunner
omits it during its count and expects the other one to have location=0.
We can solve this problem easily by opening the Window Properties Editor for ‘PlayerData >> OK’
and deleting the location part in the tag (alternatively, you can also set the location to 0). The tag
should now read: {class: push_button, MSW_class: "!Button", MSW_id: 1}

Another typical case are window captions that change during the test. For instance, when you start
the Tennis application, its title bar reads ‘Tennis – Tournaments’. However, as soon as you open
the player list it changes to ‘Tennis – Players’ causing the test execution tool to get confused.
Such cases can be solved by using abbreviations and regular expressions in the tag. For
WinRunner, the correct tag reads:
{class: window, MSW_class: "!Afx:400000:.*", label: "!Tennis.*"}

After these few manual corrections, your test cases should run flawlessly. Don’t despair if there
are still some problems, maybe you have only forgotten a detail in the specification. All the effort
for the test specification will rapidly pay off in the test maintenance phase.

Tutorial Test Maintenance

2012-02-14 Page 53 / 69

6 Test Maintenance

6.1 Adding a New Object to an Existing Window

Capture the object (window) with the GUI Spy, and drag it over its parent in the windows pane.
Then open the Window Editor of this parent and move the added object to the approximate
location that it has in the application. (This is only necessary for your convenience, because the
identification of the object becomes easier)
If the object cannot be recorded, you can also draw it yourself. Use the ‘Window Tool Bar’, which
is opened automatically when you open a window for editing, to add your object to the window.
Then open its Properties Editor and change the WindowID (and the other properties) according to
your needs. Take care to create a tag for this object that allows the test execution tool to identify it.

E.g. imagine there is a new type of tournament called ‘Unisex’ where the sex of the participants is
irrelevant. In this case, we would have to add a check box to the ‘Type’ group box.

• Open the Window Editor for ‘Tennis Tournaments >> MDIClient >> Tournaments >>
ID32770‘ (double-click the name in the Windows pane).

• Select ‘Check Box’ in the ‘Windows’ tool bar.

• Draw the check box inside the group box ‘Type’ (and adjust the size to the size of the other
check boxes there). As soon as you release the mouse button, the check box is shown in
the windows pane (with the name ‘Checkbox1’).

• For your convenience, arrange the check boxes inside of the group box ‘Type’ so that they
don’t overlap.

• Click right on the new check box and open its Properties Editor by selecting ‘Edit
Properties’.

• Edit the Window ID and the Caption, e.g. ‘Unisex’. You can either change the Tag
manually in here, too, or generate it later using the menu ‘Generate >> Generate Window
Tags’.

• Click ‘OK’ in the Properties Editor.

Tutorial Test Maintenance

2012-02-14 Page 54 / 69

Is this your result? Congratulations! Now delete the ‘Unisex’ checkbox and static text.

6.2 Copying a Task

Sometimes it may be useful to copy a task and then modify it. Copying a task without any
modifications does not make sense, because you can use one and the same task as often as you
want as a sub task inside the task flows. Also, copying a task can often be avoided by
parameterizing it. Always remember to define tasks as re-usable building blocks that facilitate the
test maintenance.

• Select a task and press ‘Copy’ in the toolbar or the menu

• Select another task

• Press ‘Paste’ to insert the copied task (and its children) as child of the selected task.

6.3 Splitting a Building Block Task

If you find out you would like to re-use a part of a building block, make it a separate building block
inside the existing one (to avoid adjusting your existing test cases)
In the Tennis example the building block “NewPlayers” contains one step to navigate in the
application, and steps for input into edit fields that you need to repeat to enter more than one
player (an example of bad building block design).

• Create a new building block and call it “PlayerInput”.

• Open the task flow of “NewPlayers”

• Select all but the first steps

Tutorial Test Maintenance

2012-02-14 Page 55 / 69

• and cut them pressing Ctrl+x

• Select the building block “PlayerInput “ and paste the steps (Ctrl+v)

•
• insert the building block “PlayerInput” where you cut the steps out of “NewPlayers”

• Make the parameters of “NewPlayers” available to “PlayerInput”, and adjust the
designators in the events of the steps

•

This way all tasks that you already defined will remain the same, and you may use “PlayerInput”
independently as well.
Note: Avoid complex hierarchy in building blocks – they become too specialized, as you cannot set
parameter values independently for each building block depending on your test case.

6.4 Changing Parent-Child Relationships

Keep in mind that the parent-child relationship in the Task pane is only organizational – to make it
easier to find tasks. It is not functional (i.e. has nothing to do with the actual test sequence)!

by Drag & Drop
Simply drag the desired child task with the mouse over its new parent.

by Cut & Paste

• Select a task or folder and press ‘Cut’ on the toolbar or the menu (“Edit >>Cut”) or (Ctrl +x).
The selected element is displayed green.

• Select a folder or the project

• Press ‘Paste’ to move the green task (and its children) to the selected task. If you want to
leave the Cut-mode without pasting the task, press ‘Cut ’ a second time. The task will stay
where it is (it is not deleted!).

6.5 Deleting a Task

The selected task may be deleted by choosing the menu 'Edit >> Delete' or by pressing the

corresponding toolbar button . The task will be deleted with all its children. If the task is used as
sub task in other task flows, the corresponding steps become undefined.

Tutorial Test Maintenance

2012-02-14 Page 56 / 69

6.6 Adding a new Connection

• Press the toolbar button ‘Connect Steps’

• Select the start step

• Select the destination step. Cycles in the graph are not allowed.

6.7 Deleting a Connection

A selected connection may be deleted by choosing the menu 'Edit >> Delete' or by pressing the

corresponding toolbar button . If the destination step becomes isolated (has no predecessors),
it will be connected to the start step of this task.

6.8 Deleting a Window

A selected window may be deleted by choosing the menu 'Edit >> Delete' or by pressing the

corresponding toolbar button . The window will be deleted with all its children and transitions.
Semantic dependencies must be removed manually. Therefore use ‘Search References’ (for all
child windows, too) before deleting the window to find affected task steps.

6.9 Creating new Menus

Since menus are a very special type of window, you cannot draw them in the Window Editor.
However, new menus can be created using the menu item ‘Draw | New Menu’. IDATG then
opens a new Menu Editor showing an empty menu. Menu Items can now be added using ‘Draw |
New Menu Item’.

 Exercise 21:

Add an item ‘Maximize’ to the menu ‘Window’.

 Solution 21:

Expand ‘TennisTournaments’ and double-click ‘Menu’ in the ‘Windows’ pane of the Application
Editor. The Menu Editor opens.

• Right-click ‘Window’ and select ‘New Menu Item’

• Right-click on the item ‘Item’ and select ‘Edit Properties’.

• Change WindowID and Caption to ‘Maximize’. (for ‘Maximize’ use ‘&Maximize’ as caption).

• Click ‘OK’ to close the Properties Editor.

• Make sure that the item is still selected and use the menu ‘Generate >> Generate Window
Tags’ to create a proper tag for the new item.

6.10 Replacing a window

Sometimes windows undergo thorough changes (several windows are added, or window types are
changed, e.g. an input field becomes a combo box). In such cases it is more convenient to use the
Replace Window function instead of adding each new window separately.

Caution:

• Only replace windows with objects of the same (or a compatible) type, so that the events are
still applicable.

• When replacing radio buttons, you have to replace the group box (because the group box is the
window that is referred to). Make sure that the buttons in that group box have the same captions
(else you have to edit your task steps).

Tutorial Test Maintenance

2012-02-14 Page 57 / 69

Replacing

• Record the new window with all its windows (elements)

• Rename windows were appropriate (e.g. check boxes)

• Open the Window Editor for the old and the new window

• You have to replace each single element that is used somewhere in a task (replacing the
unused ones is not necessary).

• Right click the window you want to replace in the old window and select “Replace Window” from
the context menu.

• In the “Replace Window” dialog box click “Browse Windows” for the new window

• In “Window Selection” double click the new window (or select it and click “OK”)

• Confirm the replacement by clicking “OK” in the “Replace Window” dialog box

• After replacing all affected windows, you should delete the old windows from the window
hierarchy.

Tutorial Data-oriented tests

2012-02-14 Page 58 / 69

7 Data-oriented tests

7.1 Importing Test Data

Another way of using one building block with different input data is to read the data from a file
(during test creation).

Let us return to our Tennis example. Surely you would like to edit data for new tournaments in a
convenient tool like Excel, where you can see them together. The data may be specified in
whatever way you like, as long as you convert them into a tab-separated file or a .csv file
afterwards. Here we use an Excel sheet and convert it into a .csv file.

To make these data available to the project we use IDATG's data import function:
Click the “Test Data” tab at the bottom of the application editor, then click right somewhere in the
panel. Two options are available at this moment: “New Data Set” and “Import Test Data”. “New
Data Set” opens the properties editor for data sets that allows you to specify a name and a
description for the data set.

We change the data set name to “Tournaments” and click OK. Expand the tree in the Test Data
panel and double click “Records”. You see three column names, but no data yet. Close the editor,
as we will not edit our test data here.
We could import our prepared test data without any preparation in IDATG. This would create two
records containing the lines 2 and 3 of the above Excel sheet, with column names given in line 1,
and the default type “string” for every entry. But this is not very convenient for continuing, as we
obviously have Boolean items as well. There are several solutions to this problem, and all need
some manual definitions (the data functions are new to IDATG, and will be enhanced and
improved in the versions to come). I suggest to import just the first line (=the column headers),
adjust the types, and then import the data records. This method ensures that you get the correct
spelling and the correct order of columns.

Create a .csv file from the first line of the Excel sheet. Right-click “Tournaments” in the test data
tree, and select “Import Test Data”.

Tutorial Data-oriented tests

2012-02-14 Page 59 / 69

In the ‘Import Test Data’ window browse for your header file, then click ‘OK’.
You should see the following when you extend the node ‘Tournaments’:

Now edit the properties of the columns that contain boolean values by double clicking them or
choosing “Edit Properties” from the context menu. Select “Bool” from the “Type” drop down list and
press “OK”.
Hint: When you change the type, you will be asked whether you want to generate default
equivalence classes for the selected field. Confirm this question with ‘Yes’, for explanations see
below (generating test data).

During the import of the test data, Boolean values are transformed into the values TRUE and
FALSE if possible, which are later displayed as check boxes.

Let us import the actual records now, following the same procedure as before: right-click
‘Tournaments’ and select ‘Import Test Data’. In the ‘Import Test Data’ dialog box the data set
‘Tournaments’ is displayed in the combo box “Import to Data Set”. Browse for the .csv file
containing all lines of your Excel sheet, and set the Field Separator correctly (default for .csv is the
semicolon “;”). Press ‘OK’ and accept the success message.

Tutorial Data-oriented tests

2012-02-14 Page 60 / 69

You can check the imported data by expanding ‘Tournaments’ in the Test Data panel, and double
clicking ‘_Records’. The first two columns are created by IDATG and contain a unique ID and the
origin (manual, imported, generated) of the record.

As you can see, true/false, on/off and 1/0 have all been interpreted as boolean values. You can
use these data in test steps just like any other designators.

 Exercise 22

Create a building block for a new tournament, using the imported data.

 Solution 22:

1. Create a folder in the task panel and call it ‘Data oriented building blocks’
2. Create a new building block in this folder, and call it ‘NewTournament_Data’
3. Copy all steps of the building block ‘NewTournament’ to ‘NewTournament_Data’
4. Replace the static values of the ‘Input’ events by designators for the test data in the

records by doing the following:

• Open the step editor for ‘Name’

• Select “Wimbledon”, then click ‘Browse Designators’

• In the ‘Designator Selection’ window expand TEST DATA | Tournaments and
double click ‘Name’

• Click ‘OK’
5. Repeat step 4 for the other fields ‘Location’ thru ‘Women double’

Tutorial Data-oriented tests

2012-02-14 Page 61 / 69

6. Delete the conditions in the steps ‘MenSingle’ and ‘WomenSingle’; the step ‘SetFemale’ is
not necessary any longer; it does not really harm, because IDATG will create two test
cases because of the two data records anyhow.

7. Instead of steps 3 thru 6 you can create a step for each input field, and assign the
corresponding designators to their events.

8. Insert a step for the selection of menu ‘View’ >> ‘Tournaments’ as the first step of this
building block.

You can use this building block in any test case just like all other building blocks. However, if you
want IDATG to generate test cases for all your data records, you have to assign the data set to the
task: Right click ‘Project Tennis’ in the Tasks pane, select ‘New Task’. In the properties editor of
the new task, change the name to ‘TC_R1_NewTournament’, and assign it to Data Set
Tournaments; click ‘OK’
The task flow of ‘TC_R1_NewTournament’ will consist of only 2 building blocks, that is
‘NewTournament_Data’ and ‘Close_Tennis_Tournaments’.

 Exercise 23

Create the test case ‘TC_R1_NewTournament’, generate and convert it, and view the result.

 Solution 23:

If you have not done the steps described above yet, do them now. Then add a step to the task
flow of ‘TC_R1_NewTournament’, and assign it to the building block ‘NewTournament_Data’. Add
another step assigned to the building block ‘Close_Tennis_Tournaments’.

Select ‘TC_R1_NewTournament’, then generate test cases (click).
Confirm the messages.

You can view the two test cases now by clicking .

7.2 Generating test data records

IDATG offers the possibility to generate a set of test data records automatically, based on your
definition of equivalence classes for each data field. The aim of this record generation is to
combine representative values systematically to get a high coverage of code with few test cases.
The values themselves are not generated, but defined by the user in the Equivalence Classes
Editor.

An equivalence class of an input variable i is a set of values that fulfills the following:

• the set covers a contiguous value range
• a similar calculation rule applies (input equivalence) OR
• similar outputs are to be generated (output equivalence)

Tutorial Data-oriented tests

2012-02-14 Page 62 / 69

An example for defining equivalence classes:

int MyFunc(int i) {
 if (i<0) return -1; // error
 else if (i<20) return sqrt(i); // square root(i)
 else return i*i; // i squared
}

ID Equivalence class Expected result

I1 [MININT..-1] -1

V1 [0..19] √i

V2 [20.. √ MAXINT] i²

I2 [√ MAXINT+1..MAXINT] undefined (overflow
error)

7.2.1 Defining equivalence classes

To create equivalence classes for a data field extend the node of the data field (e.g.
‘Tournament|Name’), so that the tree item ‘Equivalence_Classes’ becomes visible.

Open the Equivalence Class Editor in one of these ways:
1) Double click on the tree item
2) Right click on the tree item (pop-up menu) and choose ‘Edit Properties’
3) Select the tree item and select the menu item ‘Window’ >> ‘Properties Editor’

Tutorial Data-oriented tests

2012-02-14 Page 63 / 69

Now you can define valid and invalid equivalence classes for the selected data field. To create an
invalid class, deselect the ‘Valid’ checkbox. The class name must start with a character. In the
‘Range’ edit field you may write a textual description of this equivalence class (comment). Enter
values into ‘Lower Border Value’, ‘Upper border Value’ and ‘Other Representative Values’
according to your analysis of the requirements. The values are used for the generation of test data
records.
Save your entries clicking the ‘Set’ button.

 Exercise 24

Create at least one valid and one invalid equivalence class for the data field ‘Tournaments|Name’.

 Solution 24:

1. Extend the tree node ‘Tournaments|Name’
2. Open the equivalence class editor by double clicking on the tree item

‘Equivalence_classes’ of the data field’’Name’
3. Insert ‘Class name’=”Valid1”, ‘Range’ = “valid tournament names” and ‘Other

representative values’= “Australian Open, St. Pölten, Pörtschach”
4. Save the entries with the ‘Set’ button
5. Push the ‘New’ button to define another class.
6. Fill out the fields ‘Class name’ = “Invalid1”, ‘Range’ = “invalid names” and ‘Other

representative values’ = “error4test”
7. Save the entries with the ‘Set’ button
8. Click ‘OK’ to confirm the changes.

For further exercises we need to define equivalence classes for each data field. At the beginning
of the “Data oriented tests” section (Importing test data) a hint was given to generate default
equivalence classes. So the data fields ‘Begin’, ‘End’, ‘MenDouble’, ‘MenSingle’, ‘Mixed’,
‘WomenDouble’, WomanSingle’, ‘PrizeMoney’ and ‘Name’ (Exercise 24) have default equivalence
class entries.

For generating records based on equivalence classes all data fields must have at least one
equivalence class. So we have to create also equivalence classes for the data fields ‘Location’ and
‘Surface’ manually.

 Exercise 25

Create valid (optionally invalid) equivalence classes for the data fields ‘Tournaments|Surface’,
‘Tournaments|Location’ and Tournaments|PrizeMoney.

Tutorial Data-oriented tests

2012-02-14 Page 64 / 69

 Solution 25:

1. Extend the tree node ‘Tournaments|Surface’
2. Open the equivalence class editor by double clicking on the tree item

‘Equivalence_classes’ of the data field ’’Surface’
3. Fill out at least the fields ‘Class name’=”Valid1”, ‘Range’ = “valid surfaces” and ‘Other

representative values’= “Carpet, Clay, Grass, Hard, Rebound Ace”
4. Save the entries with the ‘Set’ – button
5. Push the ‘New’ – button to enter a new entry.
6. Fill out the fields ‘Class name’ = “Invalid1”, ‘Range’ = “invalid surface” and ‘Other

representative values’ = “PVC”
7. Save the entries with the ‘Set’ – button
8. Click ‘OK’ to confirm the changes.
9. Extend the tree node ‘Tournaments|Location’
10. Open the equivalence class editor by double clicking on the tree item

‘Equivalence_classes’ of the data field ’’Location’
11. Fill out at least the fields ‘Class name’=”Valid1”, ‘Range’ = “valid locations” and ‘Other

representative values’= “Wimbledon, Paris, London, Miami”
12. Save the entries with the ‘Set’ – button
13. Click ‘OK’ to confirm the changes.
14. Extend the tree node ‘Tournaments|PrizeMoney’
15. Open the equivalence class editor by double clicking on the tree item

‘Equivalence_classes’ of the data field ’’PrizeMoney’
16. Now we edit the existing valid equivalence class ‘V1’ select the list entry.
17. Fill out or change the fields, ‘Lower Border Value’ = “100”, ‘Upper Border Value’ =

“25000000”and ‘Other representative values’= “345000, 1000000”
18. Save the entries with the ‘Set’ – button
19. Click ‘OK’ to confirm the changes.

7.2.2 Record generation

Test record generation is always for one data set. So in order to avoid explosion of possible
combinations, keep the data sets as small as possible (e.g. separate set for each building block).
Depending on your focus and on requirements you can choose various types of generation.

To open the ‘Record Generator’ right-click on any item in the data set and select the menu item
‘Generate Data Records’ from the pop-up menu.

 Exercise 26

Generate the minimum number of records using all specified values.

 Solution 26:

1. Open the Record Generator.
2. Select the option ‘Generate Valid Records’
3. Select the option ‘Generate Invalid Records’
4. Select the option ‘All specified values’
5. Select the option ‘Use each class once (minimum number of test cases)’
6. Confirm your choice with the ‘OK’ button.
7. Confirm the message that 14 records were generated by clicking the ‘OK’ button.

Tutorial Data-oriented tests

2012-02-14 Page 65 / 69

8. Then open the ‘Records’ dialog to see the generated records.

7.3 Working with loops

In the exercise above we created one test case for each record of our data set, but sometimes you
will wish to run through a data set within one test case. For this purpose use the SubTask Editor to
define a loop.

7.3.1 Data sets

Our Tennis application serves for defining tournaments, including the players. As one player is not
enough, we enter several players in a loop. Let us start creating the data records, using Excel. We
need columns for each edit field in the window “Player Data”, including the three tab pages.

Tutorial Data-oriented tests

2012-02-14 Page 66 / 69

Invent several players and their data (at least the obligatory ones), then import the data into your
IDATG project, eg:

and call the data set “Players”.

Loops can be defined for subtasks only. As we already have a building block to enter player data
(NewPlayers), we could use this building block to enter several players.
Again, there is more than one way to define the input data for that building block. The easiest way
seems to be to assign the already existing parameters to the designators of the data set.

It would work for the 3 parameters defined; but the block was not designed to set values according
to a data set, and needs some adaptations.

 Exercise 27

Create a test case that enters first name, last name and date of birth of all players of your data set
into the tennis application.

 Solution 27:

1. Create a new data set ‘PlayerData’ (for help see Importing Test Data)
2. Import the data records you defined in Excel into this new data set.
3. Create a new test case TC_R2_Players_minimal
4. Add a step to click the menu “View > Players”
5. Add the building block “PlayerInput” to the task flow of TC_R2_Players_minimal
6. Open the “Sub Task Editor” (Window >> Properties Editor) of the building block

“PlayerInput”
7. Edit the “Loop Settings”

a. Activate the radio button for “Data Set”
b. Select the data set ‘Players’ from the combo box
c. Check “Loop through Valid Records”

8. Edit the parameter entries ‘FirstName’, ‘LastName’ and ‘DateBirth’. Change the values to
the corresponding datafields of the dataset “Players” using the “Browse Designators”
function. E.g. FirstName gets value ‘#~Players:FirstName#’ (see Parameters in Embedded
Tasks for help).

Tutorial Data-oriented tests

2012-02-14 Page 67 / 69

9. Close the SubTask Editor with “OK”

If you generate this test case and look at the test steps, you will realize that all players are
considered to be male, as we never set the sex attribute to “female”. Now we will make the sex
depending on the value in the data record.

• Select the step “SexFemale” of the task “PlayerInput”, open it for editing, and click
the button “Conditions…” Replace the old condition #:Sex#="female" with a new
one:

• click the existing condition and delete it

• click “Browse Designators”, and select “Project Tennis > TEST DATA > Players >
Sex” from the Designator Selection window.

• click “OK”

• edit the condition: #~Players:Sex#="f" and click “Set”, then click “OK” in the
Condition Editor, then “OK” in the step editor.

Note that the value must match the values in your data records exactly. If you have values “f” and
“F” and “Female” and “FEMALE”, create a compound condition.

 Exercise 28

Edit the step “SexMale” so that it will be generated for values “m” and “M” in the column “Sex” of
the data set “Players”.

 Solution 28:

Open the step “SexMale” of the building block “PlayerInput”
Click “Conditions…”
Select the condition #:Sex#="male", and mark it in the editing line
click “Browse Designators”, and select “Project Tennis > TEST DATA > Players > Sex” from the
Designator Selection window.
edit the condition: #~Players:Sex#="m" OR #~Players:Sex#="M" and click “Set”, then click “OK”
in the Condition Editor, then “OK” in the step editor.

Tutorial Data-oriented tests

2012-02-14 Page 68 / 69

7.3.2 Fixed number of executions

The simplest way of repeating several steps is identical execution a preset number of times. In our
Tennis example we use this for an error test case, where we try to create 2 identical players.

To make it a proper test case, you will need a few steps to handle the error message.

7.3.3 Selecting records out of a data set

IDATG has several actions to select a record in a data set. They are
ResetDataRecord (setting the first record)
GotoDataRecord (using the RecordID)
NextDataRecord

For error test cases you often need a special record to provoke a certain error message. To set
this record, use the action GotoDataRecord.

7.4 Summary data-oriented test cases

Your methods to enter data are:

• constants

• parameters

• data sets
o created manually
o imported from a file
o generated, using equivalence classes

Tutorial Conclusion

2012-02-14 Page 69 / 69

8 Conclusion
Congratulations! You have successfully worked your way through the IDATG tutorial and should
now be able to create simple test specifications on your own. With a bit of practice, you will be
able to automate test cases even for huge projects. After a few regression tests, you (and your
managers) will find that the effort for test execution and maintenance has been reduced
considerably!

