
Your business technologists. Powering progress

Hhow to Make
the Most of
Model-based Testing

White paper

2 How to Make the Most of Model-based Testing

Introduction

Test automation based on tools like HP
QuickTest Professional® is well established
and successfully used in many software
organizations.
But though the introduction of test automa-
tion has its benefits in pro moting regression
testing, we also observed some weaknesses
concerning the creation and maintenance of
the test cases:

 ` SAutomated test cases are designed by hand,
often without taking specific test case design
methods into account

 ` The implementation of automated test scripts
requires advanced programming skills

 ` The maintenance of automated test cases
after changes to the SUT (Software Under
Test) is difficult and time-consuming.

Model-based testing (MBT) has the potential
to resolve these issues. However, it is often still
regarded as too academic and therefore as not
suitable for testing in a real-world project where
resource, cost and time constraints apply.

The most common way of getting a test model
for MBT is to reuse a system model that has
been created for development. However, this
method has serious disadvantages:

 ` If both the source code and the test cases
are generated from the same model, no
deviations will be found. Defects in the system
model will remain undetected

 ` The system model is created with a focus on
development, not on testing. Thus, it includes
a wealth of information that is irrelevant
to testing while missing other data that is
required

 ` Many models in notations like UML lack the
level of formality required for automated test
case generation, e.g., because information
is contained in plain text annotations. UML
extensions can mitigate this problem, but add
a further level of complexity to the model.

For all these reasons, it is recommended to
create a separate model focused on the
purposes of testing. It should only contain
information relevant to testing and be just
detailed enough to generate test cases and test
data. If the notation used for MBT is understand-
able for system testers, they are more likely
to use it. Most system testers nowadays are
familiar with use cases, activity diagrams and
Boolean expressions.

Systematic test design techniques like equiva-
lence partitioning, boundary value analysis,
and cause-effect analysis are often not used
exhaustively enough by the testers. MBT fosters
the application of these techniques and as a
consequence improves the capability of the test
cases to detect specific categories of defects.
Despite the initial effort needed to create a test
model and integrate MBT into the test process,
the improved effectiveness and maintainabil-
ity of the test cases will be appreciated by all
stakeholders.

This article is structured as follows: In the next
section we present the recommended workflow
and give practical tips for the efficient usage
of MBT. Subsequently, we introduce the MBT
tool Atos TEMPPO Designer, and show how it
supports the MBT workflow using a practical
example. Finally, we give a conclusion and an
outlook on our future work.

Contents

Workflow and
Practical Tips
for Model-based
Testing

Model-based
Testing with Atos
TEMPPO Designer

Practical Example

Conclusion,
References and
Acknowledgment

3How to Make the Most of Model-based Testing

In this section we describe the steps required
to successfully introduce MBT into your project
and also provide a number of practical tips. But
before reading on, you should be aware of the
first pre-requisite for applying test automation

Ensure Testability of Software Requirements

While requirements engineering is usually not considered
a part of the test process, it is, nonetheless, crucial for the
subsequent testing phases. There are some points that
have to be taken into account already at this early stage
to ensure the success of the testing activities, especially if
MBT is going to be applied.

Testability comprises two aspects:

1. Ensuring that the input documents for the test process
have the required quality level

2. Ensuring that the system under test fulfills all technical
pre-requisites for test execution.

Workflow and Practical Tips
for Model-based Testing

Figure 1: MBT-related activities in relation to the ISTQB® test process

in general, and MBT in particular: a well-defined
software development process that guarantees
the adequate management of project tasks; re-
quirements; test artifacts; and change requests.
If the process in place is not at the required

maturity level, there is a strong probability that
MBT will not work. Fast and reliable communica-
tion channels between the testers and the rest
of the project team are an essential feature of
such processes (see Figure 1):

Roles
Requirements Engineer,
Test Manager,
Test Analyst,
Test Automation
Specialist

Input
User Requirements

Output
SW Requirements,
Testability Analysis
Report

Test Planning and Control

Create
Model-based

Test Design

Test Implementation
and Execution

Test
Closure

Evaluation
and Reporting

Test Analysis
and Design

Prepare
Test Data

Ensure
Testability
of SW Reqs

De�ne
Test Structure

Link
Test Model to

Test Scrips

Generate
Test Cases

Execute
Test Cases

Create
Test Report

Maintain
Test Model

Practical Tips
 ` Involve test experts in early reviews of require-
ment and design specifications in order to avoid
testability problems later on

 ` A pre-requisite for MBT is that the requirements
are detailed and clear enough that a formal
model can be derived from them

 ` Try to use activity diagrams, state diagrams,
usage scenarios etc., instead of plain text

 ` Make sure to plan interfaces that can later be
used by test automation tools to access the
system under test.

4 How to Make the Most of Model-based Testing

Define Test Structure

Based on the requirements, a test structure consisting
of test packages and test cases is derived. This should
be done with a professional test-management tool that
provides convenient interfaces to the other tools involved
in the test process (requirements management, model-
based test design, test execution, defect management,
etc.).

Roles
Test Analyst

Input
SW Requirements

Output
Test Structure

Practical Tips
 ` Don’t only focus on the required functions, also
plan tests for the non-functional requirements

 ` Decide for which test cases model-based design
shall be used. Typical candidates are tests for
requirements that can easily be formalized as a
model. On the other hand, for some requirements
MBT might not make sense

 ` In addition, don’t forget to plan some experience-
based tests in addition to the systematic tests.
A test model is a good thing but it cannot replace
human experience and intuition!

Create Model-based Test Design

In contrast to an ordinary test project where test cases
are designed e.g., in a tabular format, a model-based test
project requires the creation of a test model. This model
depicts the system behavior from a testing perspective
and contains all scenarios, constraints, and dependencies
that are relevant to testing. Modeling can require con-
siderable effort, especially if the input documents do not
have the required level of detail and frequent clarifications
are required. On the other hand, this is an excellent op-
portunity to detect defects and inconsistencies at an early
stage even before the implementation phase. Therefore,
this initial investment helps to avoid serious problems
in later stages of the project and greatly enhances the
maintainability of the tests.

Nonetheless, it has to be checked beforehand when the
ROI will be reached and if MBT makes sense for a certain
test item.

Roles
Test Analyst,
Requirements Engineer,
Software Designer

Input
SW Requirements,
Test Structure

Output
Test Model

Practical Tips
 ` Avoid reusing a model that has also been used
for code generation. If the code and the tests are
generated from the same model, no deviations
will be found! Try to create a specific model from
the testing perspective instead

 ` Creating a test model is a challenging task that
requires many different skills (test design, abstrac-
tion, understanding of requirements, technical
background). Don’t expect end users to perform
this task but employ specialists instead!

 ` Start modeling at an abstract level, then add
more detail step by step

 ` Make sure that requirements engineers and
software designers are available to clarify any
questions from the test designers

 ` Pay attention to the reusability and maintainabili-
ty of the model components, e.g., use parametriz-
able building blocks.

Link Test Model to Executable Test Scripts

If the test execution shall be done automatically, the
abstract test model has to be linked to a test script
containing concrete instructions for a test execution tool.
A possible way of doing that is to implement an adapter
or script for each keyword that is used in the model.
However, this requires considerable effort and advanced
programming skills.

A much better alternative is to use an MBT tool that can
import GUI information and generate executable scripts
automatically. In this case, each step in the model only
has to be assigned to the affected GUI element.

Roles
Test Analyst,
Test Automation
Specialist

Input
Test Model

Output
Detailed Test Model /
Test Script for each
Keyword

Practical Tips
 ` If using a professional test generator that gener-
ates complete scripts (e.g., TEMPPO Designer),
record GUI information and assign steps to GUI
elements

 ` If using a generator that only produces
abstract keywords, implement an adapter
or a script for each keyword.

Prepare Test Data

Depending on the requirements it has to be decided
whether test data can be imported from an existing
source, has to be created by hand or will be generated
automatically. In the latter case, some MBT tools provide
the possibility to specify data dependencies as part of
the model and to produce data accordingly.

Roles
Test Analyst

Input
SW Requirements,
Test Structure

Output
Test Data

Practical Tips
 ` Try to cover both test data and test sequence-
related aspects in your model (e.g., define equiva-
lence partitions for test data, activity diagrams
for sequences). Finally, connect the two aspects
by specifying which data is used in which step of
the sequence

 ` Simple test data design methods like equivalence
partitioning and boundary value analysis should
only be applied for data fields that do not have
any dependencies with others. For all othercases,
methods like cause/effect analysis or CECIL
should be applied.

5How to Make the Most of Model-based Testing

Generate Test Cases

Based on the test model, test cases can be generated
automatically. Depending on the model type and the
generation tool, the user can choose between various
generation strategies and coverage criteria. While many
tools can only generate abstract test cases consisting of
keywords or instructions for manual testing, others can
produce complete, executable scripts.

Roles
Test Analyst

Input
Detailed Test Model-
/-Test Script for each
Keyword

Output
Executable Test Scripts

Practical Tips
 ` Choose test coverage based on model type and
criticality of the associated requirements.

 ` Combine different test methods to increase defect
detection potential. Use random
generation in addition to systematic methods

 ` The integration should make it possible to transfer
the generated test cases directly to the test
management tool.

Execute Test Cases

In some projects, the test generator produces textual
instructions for manual testing. However, more frequently,
the test execution is performed automatically by a tool.
In both cases, appropriate interfaces for sending test
commands to the system under test and verifying the
results have to be available.

Roles
Tester, Test Analyst

Input
Executable Test Scripts

Output
Test Protocols,
Defect Reports

Practical Tips
 ` Don’t expect test automation to work immedi-
ately – it’s rather an iterative process. Verify if
the generated test cases work as expected
(GUI object recognition, timing, etc.). Correct the
model where necessary until the tests are
running smoothly

 ` Test scripts derived from a model usually require
that the system under test is in a well-defined
state at the beginning of each test and behaves
in a predictable way.
For instance, alterations in the database or
unforeseen pop-up messages may cause the
scripts to fail if they are not considered in the
model

 ` In cases of deviation from the expected behavior,
it has to be determined whether the problem
was really caused by a bug in the software or on
the contrary by a defect in the test model.

Create Test Report

The test protocols created during the test run have to be
transformed into a concise test report that informs the
responsible managers about the current project status.

Roles
Test Manager

Input
Test Protocols,
Defect Reports

Output
Test Report

Practical Tips
 ` For MBT it is important that statistics of the
model coverage are included (e.g., the percent-
age of states, transitions, or scenarios that have
been covered by the tests)

 ` Many test management tools can generate such
reports, provided that they have access to all
the required data. Again, a good integration with
other tools is important.

Maintain Test Model

For each new version that has to be tested, the tests have
to be adapted and repeated. Updating each single test
script by hand is impractical as it can require an enor-
mous effort. On the other hand, updating a model consist-
ing of reusable components is much less tedious, since
only a few parts have to be changed before generating
perfectly updated test scripts.

Roles
Test Analyst

Input
Test Model,
Change Requests

Output
Updated Test Model

Practical Tips
 ` It is essential that the test team is informed about
all changes in the system under test. Even small
modifications that are invisible to the user can
cause an automated test run
to fail

 ` The effort invested into a well-structured model
design will pay off now. If designed properly, only
some parts of the model have to be adapted.
Afterwards, all test cases can be updated auto-
matically by re-generating them.

6 How to Make the Most of Model-based Testing

While it is relatively easy to find tools for auto-
mated test execution, there are significantly
fewer that focus on model-based test genera-
tion. They can be categorized according to the
method used for test generation: data-oriented
tools and sequence-oriented tools. A tool that
unites both features and can also be easily
integrated into a project’s tool framework is

Model-based Testing with
Atos TEMPPO Designer

Figure 2: Model-Based Testing with TEMPPO Designer

Atos TEMPPO Designer; this tool was previ-
ously called IDATG (Integrating Design and
Automated Test case Generation).

When the research project IDATG started in
1997, the aim was to develop a simple tool for
facilitating the maintenance of SilkTest® and
WinRunner® scripts for GUI testing. Over the

years, IDATG was steadily expanded to support
an increasing number of test methods and
output formats, as well as testing via non-GUI
interfaces. In 2004, IDATG became part of the
test framework of the European Space Agency
ESA (this success story can be found in Dorothy
Graham’s new book “Experiences of Test Auto-
mation” [Graham et al. 2012]).

Test scripts

Test Execution Tool

Low-Level
Speci�cation

Test Structure
De�nition

Task Flow
Modeling

Test Data
Generation

TEMPPO Designer (IDATG)

Test case dataTest structure data

Control test run
TEMPPO Test Manager

Test Case
Generation

7How to Make the Most of Model-based Testing

Interfaces for Model
Creation
Many MBT tools do not have a model editor
of their own, but instead rely on other sources
from which models are imported. However,
reusing models that have not been created with
a focus on testing has several disadvantages.
Quite often such models are not formal enough
(e.g. plain text annotations) or they contain a
lot of information that is irrelevant to testing
while missing important data. To overcome
these problems, TEMPPO Designer has a built-in
model editor that provides an independent
way of creating test models. It uses a specific
notation that is simple to learn, and it focuses
on the necessities of testing (see Figure 4 in the
next chapter). Test sequences are represented
as task flow diagrams that consist of simple test
steps (blue) and parametrizable building blocks
(yellow) that represent reusable sub-sequences
of steps. For GUI testing, steps can be assigned
to GUI objects using the built-in GUI Spy.

Apart from common testing methods like
equivalence partitioning, a number of innova-
tive test strategies have been developed for the
tool. These include CECIL (Cause-Effect Cover-
age Incorporating Linear boundaries [Beer &
Mohacsi 2008]) and a hybrid algorithm for
random testing (Mohacsi & Wallner 2010).

Interfaces for Test
Execution
A major drawback of many test generators is
that they only produce abstract test cases that
still require manual completion, for instance by
implementing a script for each keyword. A dis-
tinguishing feature of TEMPPO Designer is that
its output are complete, executable scripts for a
variety of popular test execution tools including
HP QuickTest Professional® and the Micro Focus
tools SilkTest® and TestPartner®. However, the
tool can also be used for producing test cases
that are executed manually or over a non-GUI
interface.

This direct integration between test generation
and execution has proven to be a consider-
able advantage in that it delivers a significant
reduction in test maintenance costs; i.e., instead
of having to update each single test script for
every new version of the system under test, it
usually suffices to change a few building blocks
inside TEMPPO Designer and let it generate
new test cases. A case study from an ESA
project has shown that the additional effort for
introducing model-based test automation paid
off after only four test repetitions (Graham et al.
2012).

Interfaces for Test
Management
Integration of test generation with test and re-
quirements management is equally important.
As its new name suggests, TEMPPO Designer
is a part of the TEMPPO suite that also includes
the test management tool TEMPPO Test
Manager. Information can be passed in both
directions: Test structures and requirements
created in Test Manager are passed to Designer.
After the test model has been created, the gen-
erated test cases are passed back to TEMPPO
Test Manager which ensures proper versioning,
traceability, execution planning, and reporting.
There is also an interface for HP Quality Center®
that allows the user to import TEMPPO Test
Designer test cases via Excel.

8 How to Make the Most of Model-based Testing

We are going to demonstrate the
most relevant steps of the MBT
workflow using a simple application
for managing tennis players and
tournaments. While this is a
hypothetical example, it includes
many experiences from real
projects. It also introduces the
usage of the Atos TEMPPO tool
suite, and shows how to efficiently
use it for model-based test design
and generation.

Practical Example

Figure 3: Example Application “Tennis”

Ensure Testability of
Software Requirements
In the first application design, the use of the
GUI library “FlashyGUI” was envisaged by the
designer who had found it on the Internet and
was eager to try it out. Fortunately, the test
automation specialist was involved in the design
review and pointed out that this technology was
not supported by any test automation tool on
the market, thus making automation impossible.
Finally, it was decided to use a standard Win32
GUI instead.

Define Test Structure
Once the requirement and design specifica-
tions had been reviewed, the test analyst began
creating a tree-like test structure in TEMPPO
Test Manager. He started with typical usage sce-
narios like “Create Player,” then added tests for
non-functional requirements (e.g., performance
of the search function) and error cases (e.g., as-
signing a male player to a female tournament).
Based on his ample experience from past pro-
jects he also planned a few scenarios simulating
unusual user behavior.

Create Model-based
Test Design
Using TEMPPO Designer, the test analyst began
to break down each scenario of the test struc-
ture into a rough sequence of test steps. While
doing this, he identified recurring steps like “Edit
Player” and defined them as re-usable building
blocks with parameters. These rough building
blocks were further refined, for instance, “Edit
Player” consisted of the blocks “Edit Personal
Data,” “Edit Career Data,” and “Edit Ranking.” This
refinement was iteratively repeated until ending
up with single-user actions like entering the first
name or clicking the OK button.

The user action represented by each step could
be entered in a generic “event language”, for
instance Click or Input (“Serena”). However,
instead of concrete texts, mostly references to
parameters were used to make the model more
flexible: Input (#@EditPersonalData:FirstName#)

Semantic conditions were also considered in
the model. For instance, a middle initial was only
entered if the corresponding parameter was
not empty. This could simply be specified in the
form of a Boolean expression:
#@EditPersonalData:Initial# != “”.

Also, the expected results and reactions of the
system were specified. This could easily be
done with events like Verify (CAPTION, “Player
data has been saved.”).

However, the specification documents on which
the model was based seemed to be incomplete.
For instance, it was not clear how the system
should react if a man was added to a female
tournament. Maybe the designer had assumed
that the programmer would surely consider
this obvious case and it was therefore unneces-
sary to mention it. Fortunately, the test analyst
could contact the designer directly and ask him.
It turned out that this case had simply been
forgotten in the design and that the program-
mer, who had no interest in tennis at all, hadn’t
thought of it either. Since this defect had been
found in an early stage of the development, it
could quickly be fixed and there was little harm
done. However, if it had found its way into the
finished product, this embarrassing mistake
could have damaged the company’s reputation.

9How to Make the Most of Model-based Testing

Figure 4: Task Flows in TEMPPO Designer

Link Test Model to
Executable Test Scripts
Once the GUI of the tennis application had been
implemented, its window could be recorded
with the built-in GUI Spy of TEMPPO Designer.
Each blue test step was assigned to a certain
object in the screenshot, for instance, “Enter-
FirstName” to the input field “FirstName”.
Since the GUI Spy did not only capture the
appearance but also the technical details of the
GUI objects, no further information was needed
to produce a complete object repository for the
test execution tool (in this case, HP QuickTest
Professional®).

Also, the generic events like Input would later
be translated automatically into the tool-specific
language (for QuickTest, Input would be trans-
lated into the Set command). Only a few steps
involved more complex actions that could not
be expressed in the generic language but had

to be defined in QuickTest code. An example
was checking the alphabetical order of the
player list, a verification that had to be imple-
mented as a QuickTest function. Apart from this,
no other action was required to link the model
to the finalized test scripts.

Prepare Test Data
Most information about the tennis players was
imported from an Excel sheet showing the
current ATP ranking. In addition, equivalence
partitioning and boundary analysis were applied
to generate test data, thus covering all relevant
cases for fields like the Prize Money. In more
complex cases, dependencies were specified,
e.g., that the start date of a tournament must
lie before its end date. Finally, it was specified
which data was used in each test step simply by
inserting references to the data tables.

Generate Test Cases
Once the first version of the model was
completed, our test analyst was able to start
the script generation. He chose a combina-
tion of graph-oriented tests covering all step
connections, data-oriented tests covering all
tennis players, and a few random sequences
each consisting of 1000 steps. The output was
a complete set of test scripts and an object
repository for HP QuickTest Professional®. Also,
information about the generated test scripts
was transferred to TEMPPO Test Manager.

10 How to Make the Most of Model-based Testing

Figure 5: Excerpt from a Generated Script in QTP

Execute Test Cases
Via TEMPPO Test Manager, QuickTest was
opened to start a first trial run of the scripts. In
the course of this it was noted that a few scripts
failed because sometimes a timeout occurred
when the tennis application connected to its
database. The test analyst had to insert a higher
delay value in the corresponding step of the
test model and re-generate the scripts. In the
next trial run it turned out that the tree control
displaying the tournaments had changed its
ID and could thus not be found any more
by QuickTest. The test analyst solved this by
removing the ID from the set of properties that
was used for object identification. Again, this
was done in the model, not in QuickTest itself.
Finally, after re-generating the QuickTest files,
the tests did run smoothly.

Once the test analyst decided that the scripts
were ready, the tester could begin his task. He
ran the entire test suite and evaluated the test

protocols that were produced by QuickTest.
Several deviations from the expected behavior
were found, for instance, it was possible to enter
a negative value for the prize money. One of the
random sequences even caused the application
to crash when it tried to assign Serena Williams
and her sister Venus to the same tournament.

Create Test Report
The test results and defect reports were then
comprised by the test manager into a test re-
port using the reporting capabilities of TEMPPO
Test Manager. The test manager also included
information about the model coverage,
especially the percentage of covered scenarios,
step connections, and data records. This gave
him an excellent position in the next meeting
with the customer who wanted to know exactly
about the test progress and was impressed by
the accurate data.

Maintain Test Model
Every two weeks, a new version of the tennis
application had to be tested. Since there were
more than 500 test cases, adapting them
by hand for each version would have been
a nightmare. But thanks to the model-based
testing approach, the test analyst only had to
adapt a few building blocks in the model and
re-generate the scripts. Even when suddenly a
major change of the rules for Grand Slam tour-
naments was announced by the International
Tennis Federation, it sufficed to adapt a few
steps and conditions.

11How to Make the Most of Model-based Testing

Conclusion
In this article, we presented a workflow for
MBT that considers the traceability between
requirements, the test model, the GUI, and
the test cases.

The workflow is supported by the Atos TEMPPO
framework which has the advantage of using a
simple model notation specifically designed for
the purposes of testing. Also, instead of generat-
ing only abstract keywords from the model, the
tool produces complete, executable test scripts
for tools like HP QuickTest Professional® (QTP).

The generation of test cases is systematically
increasing the effectiveness of finding relevant
defects in the SUT. Thus, the confidence in the
product quality is increased and the number
of unplanned releases and hot fixes can be
reduced significantly. The effort required for
defining and maintaining the test cases can be
limited to a reasonable level.

Applying MBT using TEMPPO Designer has
become a major focus of Atos. A global Com-
petence Center for MBT has recently been
established with the task of promoting the topic
within the company. Our future plans include a
closer coupling of TEMPPO Designer with other
test tools. The newest version already supports
the import of object repositories from QTP. The
next step will be the import of recorded actions
that can then be converted into parametrized,
reusable building blocks.

Conclusion, References
and Acknowledgment

References
[Graham et al. 2012] D. Graham and M. Fewster, Experiences of Test Automation, Chapter 9,
p. 155-175, Addison-Wesley, 2012.

[Beer & Mohacsi 2008] A. Beer and S. Mohacsi, Efficient Test Data Generation for Variables
with Complex Dependencies, Proceedings of the IEEE ICST, Lillehammer, Norway, 2008.

[Mohacsi & Wallner 2010] S. Mohacsi and J. Wallner, A Hybrid Approach to Model-Based
Random Testing, Proceedings of the Second International Conference on Advances in System
Testing and Validation Lifecycle, 2010, pp. 10-15, 22.-27. August 2010.

About the authors
Armin Beer has been working in the area of test management and test automation for about
20 years. He is currently an independent consultant for the test management group at the
social insurance institution BVA. He is also participating in the research project SoftNet of the
Technical University of Graz and lecturing at the University of Applied Sciences in Vienna and
the Technical University of Graz. Armin’s email address is beer@arminbeer.at.

Stefan Mohacsi studied computer science at the Technical University of Vienna. In 1997,
he joined Siemens and became project manager of the research project IDATG. Today,
Stefan is senior consultant for model-based testing at Atos. In addition, he is a member of
the Austrian Testing Board and has held numerous lectures at international test conferences.
Stefan’s email address is stefan.mohacsi@atos.net.

Acknowledgment
The research herein is partially conducted within the competence network Softnet Austria II
(www.soft-net.at, COMET K-Projekt) and funded by the Austrian Federal Ministry of Economy, Family
and Youth (bmwfj), the province of Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH.
(SFG), and the city of Vienna in terms of the center for innovation and technology (ZIT).

Some parts of this work are based on an article we published in the March 2012 edition of the
Testing Experience magazine.

About Atos
Atos is an international information technology
services company with annual 2011 pro
forma revenue of EUR 8.5 billion and 74,000
employees in 48 countries. Serving a global
client base, it delivers hi-tech transactional
services, consulting and technology services,
systems integration and managed services.
With its deep technology expertise and industry
knowledge, it works with clients across the
following market sectors: Manufacturing, Retail,
Services; Public, Health & Transports; Financial
Services; Telecoms, Media & Technology;
Energy & Utilities.

Atos is focused on business technology that
powers progress and helps organizations to
create their firm of the future. It is the Worldwide
Information Technology Partner for the Olympic
and Paralympic Games and is quoted on the
Paris Eurolist Market. Atos operates under the
brands Atos, Atos Consulting & Technology
Services, Atos Worldline and Atos Worldgrid.
For more information, visit: atos.net

For more information:
Please contact dialogue@atos.net

atos.net
Atos, the Atos logo, Atos Consulting, Atos Worldline, Atos Sphere, Atos Cloud, Atos Healthcare (in the UK) and Atos Worldgrid are registered trademarks of Atos SA.
November 2012© 2012 Atos.

	Introduction
	Workflow and Practical Tips for Model-based Testing
	Model-based Testing with Atos TEMPPO Designer
	Practical Example
	Conclusion, References and Acknowledgment

